BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23709624)

  • 1. The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island.
    Cruz-Morales P; Vijgenboom E; Iruegas-Bocardo F; Girard G; Yáñez-Guerra LA; Ramos-Aboites HE; Pernodet JL; Anné J; van Wezel GP; Barona-Gómez F
    Genome Biol Evol; 2013; 5(6):1165-75. PubMed ID: 23709624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization.
    Lewis RA; Laing E; Allenby N; Bucca G; Brenner V; Harrison M; Kierzek AM; Smith CP
    BMC Genomics; 2010 Dec; 11():682. PubMed ID: 21122120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans.
    Jayapal KP; Lian W; Glod F; Sherman DH; Hu WS
    BMC Genomics; 2007 Jul; 8():229. PubMed ID: 17623098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptomyces lividans 66 produces a protease inhibitor via a tRNA-utilizing enzyme interacting with a C-minus NRPS.
    Aguilar C; Verdel-Aranda K; Ramos-Aboites HE; Licona-Cassani C; Barona-Gómez F
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37669898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptomyces coelicolor A3(2) lacks a genomic island present in the chromosome of Streptomyces lividans 66.
    Zhou X; He X; Li A; Lei F; Kieser T; Deng Z
    Appl Environ Microbiol; 2004 Dec; 70(12):7110-8. PubMed ID: 15574907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics-driven identification of SCO4677-dependent proteins in Streptomyces lividans and Streptomyces coelicolor.
    Choi SS; Kim SH; Kim ES
    J Microbiol Biotechnol; 2010 Mar; 20(3):480-4. PubMed ID: 20372015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans.
    Millan-Oropeza A; Henry C; Blein-Nicolas M; Aubert-Frambourg A; Moussa F; Bleton J; Virolle MJ
    J Proteome Res; 2017 Jul; 16(7):2597-2613. PubMed ID: 28560880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete genome sequence of Streptomyces lividans TK24.
    Rückert C; Albersmeier A; Busche T; Jaenicke S; Winkler A; Friðjónsson ÓH; Hreggviðsson GÓ; Lambert C; Badcock D; Bernaerts K; Anne J; Economou A; Kalinowski J
    J Biotechnol; 2015 Apr; 199():21-2. PubMed ID: 25680930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters.
    Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A
    Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient system for stable markerless integration of large biosynthetic gene clusters into Streptomyces chromosomes.
    Csolleiova D; Knirschova R; Rezuchova B; Homerova D; Sevcikova B; Matulova M; Núñez LE; Novakova R; Feckova L; Javorova R; Cortés J; Kormanec J
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):2123-2137. PubMed ID: 33564923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased heterologous production of the antitumoral polyketide mithramycin A by engineered Streptomyces lividans TK24 strains.
    Novakova R; Núñez LE; Homerova D; Knirschova R; Feckova L; Rezuchova B; Sevcikova B; Menéndez N; Morís F; Cortés J; Kormanec J
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):857-869. PubMed ID: 29196786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive Reannotation of the Genome of the Model Streptomycete
    Droste J; Rückert C; Kalinowski J; Hamed MB; Anné J; Simoens K; Bernaerts K; Economou A; Busche T
    Front Microbiol; 2021; 12():604034. PubMed ID: 33935985
    [No Abstract]   [Full Text] [Related]  

  • 14. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor.
    Lejeune C; Cornu D; Sago L; Redeker V; Virolle MJ
    Res Microbiol; 2024; 175(4):104177. PubMed ID: 38159786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters.
    Klumbys E; Xu W; Koduru L; Heng E; Wei Y; Wong FT; Zhao H; Ang EL
    Microb Cell Fact; 2024 May; 23(1):149. PubMed ID: 38790014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance.
    Hoshino K; Imai Y; Mukai K; Hamauzu R; Ochi K; Hosaka T
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2193-2203. PubMed ID: 31925486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous production of paromamine in Streptomyces lividans TK24 using kanamycin biosynthetic genes from Streptomyces kanamyceticus ATCC12853.
    Nepal KK; Oh TJ; Sohng JK
    Mol Cells; 2009 May; 27(5):601-8. PubMed ID: 19466609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.
    Xu M; Wang Y; Zhao Z; Gao G; Huang SX; Kang Q; He X; Lin S; Pang X; Deng Z; Tao M
    Appl Environ Microbiol; 2016 Oct; 82(19):5795-805. PubMed ID: 27451447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization.
    Liu S; Wang M; Du G; Chen J
    BMC Biotechnol; 2016 Oct; 16(1):75. PubMed ID: 27793152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis.
    Le Maréchal P; Decottignies P; Marchand CH; Degrouard J; Jaillard D; Dulermo T; Froissard M; Smirnov A; Chapuis V; Virolle MJ
    Appl Environ Microbiol; 2013 Oct; 79(19):5907-17. PubMed ID: 23872561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.