These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23710331)

  • 1. Autofluorescence Images with Carl Zeiss versus Topcon Eye Fundus Camera: A Comparative Study.
    Muñoz JM; Coco RM; Sanabria MR; Cuadrado R; Blanco E
    J Ophthalmol; 2013; 2013():309192. PubMed ID: 23710331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHOROIDAL NEOVASCULAR AREA AND VESSEL DENSITY COMPARISON BETWEEN TWO SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY DEVICES.
    Ohayon A; Sacconi R; Semoun O; Corbelli E; Souied EH; Querques G
    Retina; 2020 Mar; 40(3):521-528. PubMed ID: 30589664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cataract surgery and IOL implantation on the magnification of a fundus photograph: a pilot study.
    Knaapi L; Lehtonen T; Vesti E
    Acta Ophthalmol; 2017 Dec; 95(8):839-841. PubMed ID: 28371281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of nidek 3-dx, zeiss, canon, and topcon fundus cameras.
    Boes DA; Clifton BC; Mills RP
    J Glaucoma; 1994; 3(3):190-200. PubMed ID: 19920596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fundus autofluorescence images acquired by the confocal scanning laser ophthalmoscope (488 nm excitation) and the modified Topcon fundus camera (580 nm excitation).
    Deli A; Moetteli L; Ambresin A; Mantel I
    Int Ophthalmol; 2013 Dec; 33(6):635-43. PubMed ID: 23468053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a model eye and its applications.
    Rudnicka AR; Edgar DF; Bennett AG
    Ophthalmic Physiol Opt; 1992 Oct; 12(4):485-90. PubMed ID: 1293539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fred Hollows lecture: digital screening for eye disease.
    Constable IJ; Yogesan K; Eikelboom R; Barry C; Cuypers M
    Clin Exp Ophthalmol; 2000 Jun; 28(3):129-32. PubMed ID: 10981779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical verification of the formula of Bennett et al. (1994) of determining the size of retinal features by fundus photography.
    Knaapi L; Aarnisalo E; Vesti E; Leinonen MT
    Acta Ophthalmol; 2015 May; 93(3):248-52. PubMed ID: 25270771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis.
    Sarao V; Veritti D; Borrelli E; Sadda SVR; Poletti E; Lanzetta P
    BMC Ophthalmol; 2019 Nov; 19(1):231. PubMed ID: 31744471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.
    Hu Z; Medioni GG; Hernandez M; Hariri A; Wu X; Sadda SR
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8375-83. PubMed ID: 24265015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study.
    Sengupta S; Sindal MD; Baskaran P; Pan U; Venkatesh R
    Ophthalmol Retina; 2019 Feb; 3(2):146-153. PubMed ID: 31014763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical coherence tomography and fundus autofluorescence imaging study of peripapillary acute zonal occult outer retinopathy.
    Makino S; Tanaka Y; Tampo H
    Case Rep Ophthalmol; 2013 Jan; 4(1):11-6. PubMed ID: 23467270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of fundus autofluorescence to detect disease severity in nonexudative age-related macular degeneration.
    Schachar IH; Zahid S; Comer GM; Stem M; Schachar AG; Saxe SJ; Gardner TW; Elner VM; Jayasundera T
    JAMA Ophthalmol; 2013 Aug; 131(8):1009-15. PubMed ID: 23787960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnification characteristics of fundus imaging systems.
    Rudnicka AR; Burk RO; Edgar DF; Fitzke FW
    Ophthalmology; 1998 Dec; 105(12):2186-92. PubMed ID: 9855145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma.
    Yogesan K; Constable IJ; Barry CJ; Eikelboom RH; Morgan W; Tay-Kearney ML; Jitskaia L
    J Glaucoma; 1999 Oct; 8(5):297-301. PubMed ID: 10529928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How large is the optic disc? Systematic errors in fundus cameras and topographers.
    Meyer T; Howland HC
    Ophthalmic Physiol Opt; 2001 Mar; 21(2):139-50. PubMed ID: 11261348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Geographic Atrophy from Color Photographs and Fundus Autofluorescence Images: Age-Related Eye Disease Study 2 Report Number 11.
    Domalpally A; Danis R; Agrón E; Blodi B; Clemons T; Chew E;
    Ophthalmology; 2016 Nov; 123(11):2401-2407. PubMed ID: 27448832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of vitreous haze using ultra-wide field retinal imaging.
    Dickson D; Agarwal A; Sadiq MA; Hassan M; High R; Nguyen QD; Sepah YJ
    J Ophthalmic Inflamm Infect; 2016 Dec; 6(1):35. PubMed ID: 27687961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal scanning laser ophthalmoscopy versus modified conventional fundus camera for fundus autofluorescence.
    Calvo-Maroto AM; Esteve-Taboada JJ; Domínguez-Vicent A; Pérez-Cambrodí RJ; Cerviño A
    Expert Rev Med Devices; 2016 Oct; 13(10):965-978. PubMed ID: 27634136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The fundus autofluorescence of the multiple evanescent white dot syndrome].
    Zhou CX; Liu LM; Mao AL; Wei W
    Zhonghua Yan Ke Za Zhi; 2013 Dec; 49(12):1089-93. PubMed ID: 24499695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.