These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23710634)

  • 1. Hydrolysates of lignocellulosic materials for biohydrogen production.
    Chen R; Wang YZ; Liao Q; Zhu X; Xu TF
    BMB Rep; 2013 May; 46(5):244-51. PubMed ID: 23710634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.
    Ren NQ; Zhao L; Chen C; Guo WQ; Cao GL
    Bioresour Technol; 2016 Sep; 215():92-99. PubMed ID: 27090403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentative hydrogen production from agroindustrial lignocellulosic substrates.
    Reginatto V; Antônio RV
    Braz J Microbiol; 2015 Jun; 46(2):323-35. PubMed ID: 26273246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes.
    Kucharska K; Rybarczyk P; Hołowacz I; Łukajtis R; Glinka M; Kamiński M
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing recalcitrant lignocellulosic biomass for enhanced biohydrogen production: Recent advances, challenges, and future perspective.
    Ali SS; Al-Tohamy R; Elsamahy T; Sun J
    Biotechnol Adv; 2024; 72():108344. PubMed ID: 38521282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH
    Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens.
    Zhang X; Ye X; Guo B; Finneran KT; Zilles JL; Morgenroth E
    Bioresour Technol; 2013 Nov; 147():89-95. PubMed ID: 23994308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives.
    Amiri H; Karimi K
    Bioresour Technol; 2018 Dec; 270():702-721. PubMed ID: 30195696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals.
    Fernández-Sandoval MT; García A; Teymennet-Ramírez KV; Arenas-Olivares DY; Martínez-Morales F; Trejo-Hernández MR
    Biotechnol Prog; 2024; 40(1):e3406. PubMed ID: 37964692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen production from lignocellulosic feedstock.
    Cheng CL; Lo YC; Lee KS; Lee DJ; Lin CY; Chang JS
    Bioresour Technol; 2011 Sep; 102(18):8514-23. PubMed ID: 21570833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products.
    Ali N; Zhang Q; Liu ZY; Li FL; Lu M; Fang XC
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):455-473. PubMed ID: 31686144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors.
    Wang Y; Zhang Y; Cui Q; Feng Y; Xuan J
    Molecules; 2024 May; 29(10):. PubMed ID: 38792135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy.
    Yang E; Chon K; Kim KY; Le GTH; Nguyen HY; Le TTQ; Nguyen HTT; Jae MR; Ahmad I; Oh SE; Chae KJ
    Bioresour Technol; 2023 Feb; 369():128380. PubMed ID: 36427768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects.
    Singh T; Alhazmi A; Mohammad A; Srivastava N; Haque S; Sharma S; Singh R; Yoon T; Gupta VK
    Bioresour Technol; 2021 Oct; 338():125511. PubMed ID: 34274587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.
    Patel AK; Debroy A; Sharma S; Saini R; Mathur A; Gupta R; Tuli DK
    Bioresour Technol; 2015 Jan; 175():291-7. PubMed ID: 25459835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulose biohydrogen towards net zero emission: A review on recent developments.
    Lay CH; Dharmaraja J; Shobana S; Arvindnarayan S; Krishna Priya R; Jeyakumar RB; Saratale RG; Park YK; Kumar V; Kumar G
    Bioresour Technol; 2022 Nov; 364():128084. PubMed ID: 36220533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.
    Zhang K; Pei Z; Wang D
    Bioresour Technol; 2016 Jan; 199():21-33. PubMed ID: 26343573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts.
    Zha Y; Slomp R; van Groenestijn J; Punt PJ
    Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.