These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dioptric power: its nature and its representation in three- and four-dimensional space. Harris WF Optom Vis Sci; 1997 Jun; 74(6):349-66. PubMed ID: 9255813 [TBL] [Abstract][Full Text] [Related]
3. Mapping of error cells in clinical measure to symmetric power space. Abelman H; Abelman S Ophthalmic Physiol Opt; 2007 Sep; 27(5):490-9. PubMed ID: 17718888 [TBL] [Abstract][Full Text] [Related]
4. Representation of dioptric power in Euclidean 3-space. Harris WF Ophthalmic Physiol Opt; 1991 Apr; 11(2):130-6. PubMed ID: 2062537 [TBL] [Abstract][Full Text] [Related]
5. Statistical inference on mean dioptric power: asymmetric powers and singular covariance. Harris WF Ophthalmic Physiol Opt; 1991 Jul; 11(3):263-70. PubMed ID: 1766691 [TBL] [Abstract][Full Text] [Related]
6. Mean of a sample of equivalent dioptric powers. Harris WF Optom Vis Sci; 1990 May; 67(5):359-60. PubMed ID: 2367090 [TBL] [Abstract][Full Text] [Related]
7. An easier method to obtain the sphere, cylinder, and axis from an off-axis dioptric power matrix. Keating MP Am J Optom Physiol Opt; 1980 Oct; 57(10):734-7. PubMed ID: 7446684 [TBL] [Abstract][Full Text] [Related]
8. Keating's asymmetric dioptric power matrices expressed in terms of sphere, cylinder, axis, and asymmetry. Harris WF Optom Vis Sci; 1993 Aug; 70(8):666-7. PubMed ID: 8414388 [TBL] [Abstract][Full Text] [Related]
9. A unified paraxial approach to astigmatic optics. Harris WF Optom Vis Sci; 1999 Jul; 76(7):480-99. PubMed ID: 10445640 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric dioptric power matrices and corresponding thick lenses. Keating MP Optom Vis Sci; 1997 Jun; 74(6):393-6. PubMed ID: 9255818 [TBL] [Abstract][Full Text] [Related]
11. Lens effectivity in terms of dioptric power matrices. Keating MP Am J Optom Physiol Opt; 1981 Dec; 58(12):1154-60. PubMed ID: 7325207 [TBL] [Abstract][Full Text] [Related]
12. Equivalent dioptric power asymmetry relations for thick astigmatic systems. Keating MP Optom Vis Sci; 1997 Jun; 74(6):388-92. PubMed ID: 9255817 [TBL] [Abstract][Full Text] [Related]
13. Solving the matrix form of Prentice's equation for dioptric power. Harris WF Optom Vis Sci; 1991 Mar; 68(3):178-82. PubMed ID: 2047079 [TBL] [Abstract][Full Text] [Related]
14. Local dioptric power matrix in a progressive addition lens. Alonso J; Gómez-Pedrero JA; Bernabeu E Ophthalmic Physiol Opt; 1997 Nov; 17(6):522-9. PubMed ID: 9666927 [TBL] [Abstract][Full Text] [Related]
15. Error cells for spherical powers in symmetric dioptric power space. Harris WF; Rubin A Optom Vis Sci; 2005 Jul; 82(7):633-6. PubMed ID: 16044077 [TBL] [Abstract][Full Text] [Related]
16. Estimation of dioptric power from measurements of meridional power and curvature, sagitta, lens thickness, and prismatic effect. Harris WF Optom Vis Sci; 1992 Aug; 69(8):629-38. PubMed ID: 1513559 [TBL] [Abstract][Full Text] [Related]
17. Interconverting the matrix and principal meridional representations of dioptric power in general including powers with nonorthogonal and complex principal meridians. Harris WF Ophthalmic Physiol Opt; 2001 May; 21(3):247-52. PubMed ID: 11396399 [TBL] [Abstract][Full Text] [Related]
18. Direct, vec and other squares, and sample variance-covariance of dioptric power. Harris WF Ophthalmic Physiol Opt; 1990 Jan; 10(1):72-80. PubMed ID: 2330218 [TBL] [Abstract][Full Text] [Related]
19. Interconverting the matrix and principal-meridional representations of dioptric power and reduced vergence. Harris WF Ophthalmic Physiol Opt; 2000 Nov; 20(6):494-500. PubMed ID: 11185886 [TBL] [Abstract][Full Text] [Related]
20. Generalizing Long's inversion of the matrix form of Prentice's equation and the concept of generalized inverse dioptric power. Harris WF Optom Vis Sci; 1991 Mar; 68(3):173-7. PubMed ID: 2047078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]