BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 23710727)

  • 1. REAPR: a universal tool for genome assembly evaluation.
    Hunt M; Kikuchi T; Sanders M; Newbold C; Berriman M; Otto TD
    Genome Biol; 2013 May; 14(5):R47. PubMed ID: 23710727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. misFinder: identify mis-assemblies in an unbiased manner using reference and paired-end reads.
    Zhu X; Leung HC; Wang R; Chin FY; Yiu SM; Quan G; Li Y; Zhang R; Jiang Q; Liu B; Dong Y; Zhou G; Wang Y
    BMC Bioinformatics; 2015 Nov; 16():386. PubMed ID: 26573684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.
    Yang LA; Chang YJ; Chen SH; Lin CY; Ho JM
    BMC Genomics; 2019 Apr; 19(Suppl 9):238. PubMed ID: 30999844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the impact of Illumina error correction tools on de novo genome assembly.
    Heydari M; Miclotte G; Demeester P; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2017 Aug; 18(1):374. PubMed ID: 28821237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies.
    Rhie A; Walenz BP; Koren S; Phillippy AM
    Genome Biol; 2020 Sep; 21(1):245. PubMed ID: 32928274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring synteny between genome assemblies: a systematic evaluation.
    Liu D; Hunt M; Tsai IJ
    BMC Bioinformatics; 2018 Jan; 19(1):26. PubMed ID: 29382321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality draft assemblies of mammalian genomes from massively parallel sequence data.
    Gnerre S; Maccallum I; Przybylski D; Ribeiro FJ; Burton JN; Walker BJ; Sharpe T; Hall G; Shea TP; Sykes S; Berlin AM; Aird D; Costello M; Daza R; Williams L; Nicol R; Gnirke A; Nusbaum C; Lander ES; Jaffe DB
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1513-8. PubMed ID: 21187386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAMSA: a tool for comparative analysis and merging of scaffold assemblies.
    Aganezov SS; Alekseyev MA
    BMC Bioinformatics; 2017 Dec; 18(Suppl 15):496. PubMed ID: 29244014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metassembler: merging and optimizing de novo genome assemblies.
    Wences AH; Schatz MC
    Genome Biol; 2015 Sep; 16():207. PubMed ID: 26403281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRASShopPER-An algorithm for de novo assembly based on GPU alignments.
    Swiercz A; Frohmberg W; Kierzynka M; Wojciechowski P; Zurkowski P; Badura J; Laskowski A; Kasprzak M; Blazewicz J
    PLoS One; 2018; 13(8):e0202355. PubMed ID: 30114279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EvalDNA: a machine learning-based tool for the comprehensive evaluation of mammalian genome assembly quality.
    MacDonald ML; Lee KH
    BMC Bioinformatics; 2021 Nov; 22(1):570. PubMed ID: 34837948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies.
    Clark SC; Egan R; Frazier PI; Wang Z
    Bioinformatics; 2013 Feb; 29(4):435-43. PubMed ID: 23303509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kollector: transcript-informed, targeted de novo assembly of gene loci.
    Kucuk E; Chu J; Vandervalk BP; Hammond SA; Warren RL; Birol I
    Bioinformatics; 2017 Jun; 33(12):1782-1788. PubMed ID: 28186221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference-guided de novo assembly approach improves genome reconstruction for related species.
    Lischer HEL; Shimizu KK
    BMC Bioinformatics; 2017 Nov; 18(1):474. PubMed ID: 29126390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient de novo assembly of large genomes using compressed data structures.
    Simpson JT; Durbin R
    Genome Res; 2012 Mar; 22(3):549-56. PubMed ID: 22156294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating genome assemblies with MAIA.
    Nijkamp J; Winterbach W; van den Broek M; Daran JM; Reinders M; de Ridder D
    Bioinformatics; 2010 Sep; 26(18):i433-9. PubMed ID: 20823304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo likelihood-based measures for comparing genome assemblies.
    Ghodsi M; Hill CM; Astrovskaya I; Lin H; Sommer DD; Koren S; Pop M
    BMC Res Notes; 2013 Aug; 6():334. PubMed ID: 23965294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies.
    Yavas G; Hong H; Xiao W
    BMC Genomics; 2019 Sep; 20(1):706. PubMed ID: 31510940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.