These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23711099)

  • 21. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides.
    Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH
    J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes.
    Matsumoto M; Watanabe N; Hoshiya N; Ijuin HK
    Chem Rec; 2008; 8(4):213-28. PubMed ID: 18752319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of AMPPD Chemiluminescence in a Different Voice.
    Yue L; Liu YJ
    J Chem Theory Comput; 2013 May; 9(5):2300-12. PubMed ID: 26583723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An intramolecular charge/electron transfer chemiluminescence mechanism of oxidophenyl-substituted 1,2-dioxetane.
    Tanaka C; Tanaka J; Matsumoto M
    Phys Chem Chem Phys; 2011 Sep; 13(35):16005-14. PubMed ID: 21829826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of dioxygen on luminol chemiluminescence.
    Baj S; Krawczyk T; Staszewska K
    Luminescence; 2009; 24(5):348-54. PubMed ID: 19294631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence.
    da Silva SM; Lang AP; Dos Santos APF; Cabello MC; Ciscato LFML; Bartoloni FH; Bastos EL; Baader WJ
    J Org Chem; 2021 Sep; 86(17):11434-11441. PubMed ID: 34420296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemiluminescent detection of catecholamines by generation of hydrogen peroxide with imidazole.
    Nozaki O; Iwaeda T; Moriyama H; Kato Y
    Luminescence; 1999; 14(3):123-7. PubMed ID: 10423572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium methoxide-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a 2'-alkoxy-2-hydroxy-1,1'-binaphthyl-7-yl moiety.
    Kawashima H; Watanabe N; Ijuin HK; Matsumoto M
    Luminescence; 2013; 28(5):696-704. PubMed ID: 22997052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the Structural Space of Chemiluminescent 1,2-Dioxetanes.
    Haris U; Lippert AR
    ACS Sens; 2023 Jan; 8(1):3-11. PubMed ID: 36574491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of response surface methodology (RSM) to the optimization of a post-column luminol chemiluminescence analysis of silyl peroxides.
    Baj S; SÅ‚upska R; Krawczyk T
    Talanta; 2013 Jan; 103():172-8. PubMed ID: 23200374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peroxyoxalate High-Energy Intermediate is Efficiently Decomposed by the Catalyst Imidazole.
    Boaro A; Bartoloni FH
    Photochem Photobiol; 2016 Jul; 92(4):546-51. PubMed ID: 27285215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification strategy of absolute chemiluminescence efficiency for systems of luminol with hydrogen peroxide.
    Qin X; Jahanghiri S; Zhan Z; Chu K; Khangura J; Ding Z
    Anal Chim Acta; 2024 Jan; 1285():342023. PubMed ID: 38057060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two Conical Intersections Control Luminol Chemiluminescence.
    Yue L; Liu YJ
    J Chem Theory Comput; 2019 Mar; 15(3):1798-1805. PubMed ID: 30715879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores.
    Gnaim S; Green O; Shabat D
    Chem Commun (Camb); 2018 Feb; 54(17):2073-2085. PubMed ID: 29423487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Study of the Peroxyoxalate System in Completely Aqueous Carbonate Buffer.
    Augusto FA; Bartoloni FH; Pagano APE; Baader WJ
    Photochem Photobiol; 2021 Mar; 97(2):309-316. PubMed ID: 33073353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemiluminescence and energy transfer mechanism of lanthanide ions in different media based on peroxomonosulfate system.
    Zhang BT; Lin JM
    Luminescence; 2010; 25(4):322-7. PubMed ID: 19714665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.
    Xu SL; Cui H
    Luminescence; 2007; 22(2):77-87. PubMed ID: 17089353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a (benzothiazol-2-yl)-3-hydroxyphenyl group: a radiationless pathway leading to marked decline of chemiluminescence efficiency.
    Tanimura M; Watanabe N; Ijuin HK; Matsumoto M
    J Org Chem; 2012 May; 77(10):4725-31. PubMed ID: 22524301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic insights in charge-transfer-induced luminescence of 1,2-dioxetanones with a substituent of low oxidation potential.
    Isobe H; Takano Y; Okumura M; Kuramitsu S; Yamaguchi K
    J Am Chem Soc; 2005 Jun; 127(24):8667-79. PubMed ID: 15954772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of sulfanyl-, sulfinyl-, and sulfonyl-substituted bicyclic dioxetanes and their base-induced chemiluminescence.
    Watanabe N; Kikuchi M; Maniwa Y; Ijuin HK; Matsumoto M
    J Org Chem; 2010 Feb; 75(3):879-84. PubMed ID: 20073481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.