These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23711329)

  • 1. Influence of specimen geometry on temperature increase during ultrasonic fatigue testing.
    Bach J; Höppel HW; Bitzek E; Göken M
    Ultrasonics; 2013 Dec; 53(8):1412-6. PubMed ID: 23711329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry.
    Heinz S; Balle F; Wagner G; Eifler D
    Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.
    Mayer H; Fitzka M; Schuller R
    Ultrasonics; 2013 Dec; 53(8):1425-32. PubMed ID: 23548512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of ultrasonic fatigue testing technique--variable amplitude loadings and crack growth monitoring.
    Müller T; Sander M
    Ultrasonics; 2013 Dec; 53(8):1417-24. PubMed ID: 23597637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data.
    Fitzka M; Schönbauer BM; Rhein RK; Sanaei N; Zekriardehani S; Tekalur SA; Carroll JW; Mayer H
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic Fatigue Testing in the Tension-Compression Mode.
    Trško L; Nový F; Bokůvka O; Jambor M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Loading Frequency and Specimen Geometry on High Cycle and Very High Cycle Fatigue Life of a High Strength Titanium Alloy.
    Li Y; Song Q; Feng S; Sun C
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic fatigue of unfilled and carbon nanotube (CNT) reinforced polyetheretherketone (PEEK).
    Fitzka M; Schönbauer BM; Stojanovic V; Rennhofer H; Lichtenegger H; Carroll JW; Sanaei N; Mapkar J; Mayer H
    Ultrasonics; 2024 Mar; 138():107236. PubMed ID: 38183759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis.
    Chai G; Zhou N
    Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing specimen length in elastic testing of end-constrained cancellous bone.
    Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):22-30. PubMed ID: 19878899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Changing Law of Cutting and Ultrasonic Strengthening Surface Integrity during Fatigue of Ti-17 Alloy.
    Zhou Z; Yao C; Tan L; Xin H; Zhang Y; Zhao Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro analysis of post-fatigue reverse-torque values at the dental abutment/implant interface for a unitarian abutment design.
    Cashman PM; Schneider RL; Schneider GB; Stanford CM; Clancy JM; Qian F
    J Prosthodont; 2011 Oct; 20(7):503-9. PubMed ID: 21880095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of specimen gripping device, geometry and fixation method on microtensile bond strength, failure mode and stress distribution: laboratory and finite element analyses.
    Raposo LH; Armstrong SR; Maia RR; Qian F; Geraldeli S; Soares CJ
    Dent Mater; 2012 May; 28(5):e50-62. PubMed ID: 22425572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Pulse-Pause Sequences on the Self-Heating Behavior in Continuous Carbon Fiber-Reinforced Composites under Ultrasonic Cyclic Three-Point Bending Loads.
    Premanand A; Balle F
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].
    Kato H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Dec; 27(4):1017-27. PubMed ID: 2489466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.
    Villarraga ML; Kurtz SM; Herr MP; Edidin AA
    J Biomed Mater Res A; 2003 Aug; 66(2):298-309. PubMed ID: 12889000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic and viscoelastic properties of trabecular bone by a compression testing approach.
    Linde F
    Dan Med Bull; 1994 Apr; 41(2):119-38. PubMed ID: 8039429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Ultrasonic Fatigue Test and Application in Bending Fatigue of TC4 Titanium Alloy.
    Tang S; Wang X; Huang B; Yang D; Li L; He C; Xu B; Liu Y; Wang C; Wang Q
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The direct tensile test of composite resins using the small specimen--effect of the preparation of specimen, the size of specimen and the testing condition on the tensile properties].
    Fujishima A; Miyazaki T; Kuneshita H; Suzuki E; Miyaji T
    Shika Zairyo Kikai; 1990 Sep; 9(5):728-33. PubMed ID: 2133362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic fatigue testing of concrete.
    Fitzka M; Karr U; Granzner M; Melichar T; Rödhammer M; Strauss A; Mayer H
    Ultrasonics; 2021 Sep; 116():106521. PubMed ID: 34273639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.