These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation. Kitano H; Suzuki H; Kondo T; Sasaki K; Iwanaga S; Nakamura M; Ohno K; Saruwatari Y Macromol Biosci; 2011 Apr; 11(4):557-64. PubMed ID: 21243650 [TBL] [Abstract][Full Text] [Related]
3. Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers. Iwasaki Y; Takami U; Shinohara Y; Kurita K; Akiyoshi K Biomacromolecules; 2007 Sep; 8(9):2788-94. PubMed ID: 17663529 [TBL] [Abstract][Full Text] [Related]
4. Effect of the hydrophobic basal layer of thermoresponsive block co-polymer brushes on thermally-induced cell sheet harvest. Matsuzaka N; Takahashi H; Nakayama M; Kikuchi A; Okano T J Biomater Sci Polym Ed; 2012; 23(10):1301-14. PubMed ID: 21722425 [TBL] [Abstract][Full Text] [Related]
5. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Fan X; Lin L; Messersmith PB Biomacromolecules; 2006 Aug; 7(8):2443-8. PubMed ID: 16903694 [TBL] [Abstract][Full Text] [Related]
6. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. Hadjicharalambous C; Flouraki C; Narain R; Chatzinikolaidou M; Vamvakaki M J Mater Sci Mater Med; 2018 Jun; 29(7):98. PubMed ID: 29946888 [TBL] [Abstract][Full Text] [Related]
7. Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer. Mizukami K; Takakura H; Matsunaga T; Kitano H Colloids Surf B Biointerfaces; 2008 Oct; 66(1):110-8. PubMed ID: 18614341 [TBL] [Abstract][Full Text] [Related]
8. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
9. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate. Kitano H; Kondo T; Kamada T; Iwanaga S; Nakamura M; Ohno K Colloids Surf B Biointerfaces; 2011 Nov; 88(1):455-62. PubMed ID: 21820283 [TBL] [Abstract][Full Text] [Related]
10. Polymer grafting via ATRP initiated from macroinitiator synthesized on surface. Liu Y; Klep V; Zdyrko B; Luzinov I Langmuir; 2004 Aug; 20(16):6710-8. PubMed ID: 15274576 [TBL] [Abstract][Full Text] [Related]
11. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Tugulu S; Klok HA Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637 [TBL] [Abstract][Full Text] [Related]
12. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related]
13. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
14. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. Meng XL; Fang Y; Wan LS; Huang XJ; Xu ZK Langmuir; 2012 Sep; 28(38):13616-23. PubMed ID: 22950871 [TBL] [Abstract][Full Text] [Related]
15. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and morphological study of thick benzyl methacrylate-styrene diblock copolymer brushes. Munirasu S; Karunakaran RG; Rühe J; Dhamodharan R Langmuir; 2011 Nov; 27(21):13284-92. PubMed ID: 21928787 [TBL] [Abstract][Full Text] [Related]
17. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes. Idota N; Ebara M; Kotsuchibashi Y; Narain R; Aoyagi T Sci Technol Adv Mater; 2012 Dec; 13(6):064206. PubMed ID: 27877533 [TBL] [Abstract][Full Text] [Related]
18. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces. Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041 [TBL] [Abstract][Full Text] [Related]
19. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801 [TBL] [Abstract][Full Text] [Related]
20. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Yang Q; Tian J; Hu MX; Xu ZK Langmuir; 2007 Jun; 23(12):6684-90. PubMed ID: 17497813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]