These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 23712447)
1. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities. Deiber JA; Piaggio MV; Peirotti MB Electrophoresis; 2013 Sep; 34(18):2648-54. PubMed ID: 23712447 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acidic background electrolytes. Koval D; Kasicka V; Jirácek J; Collinsová M Electrophoresis; 2003 Mar; 24(5):774-81. PubMed ID: 12627437 [TBL] [Abstract][Full Text] [Related]
3. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data. Piaggio MV; Peirotti MB; Deiber JA J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428 [TBL] [Abstract][Full Text] [Related]
4. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments. Jaros M; Vceláková K; Zusková I; Gas B Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171 [TBL] [Abstract][Full Text] [Related]
5. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities. Deiber JA; Piaggio MV; Peirotti MB Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200 [TBL] [Abstract][Full Text] [Related]
6. Separation and investigation of structure-mobility relationship of gonadotropin-releasing hormones by capillary zone electrophoresis in conventional and isoelectric acidic background electrolytes. Solínová V; Kasicka V; Sázelová P; Barth T; Miksík I J Chromatogr A; 2007 Jul; 1155(2):146-53. PubMed ID: 17229433 [TBL] [Abstract][Full Text] [Related]
7. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE. Plasson R; Vayaboury W; Giani O; Cottet H Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic boundary condition of water on hydrophobic surfaces. Schaeffel D; Yordanov S; Schmelzeisen M; Yamamoto T; Kappl M; Schmitz R; Dünweg B; Butt HJ; Koynov K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051001. PubMed ID: 23767478 [TBL] [Abstract][Full Text] [Related]
9. Electrophoresis of particles with Navier velocity slip. Park HM Electrophoresis; 2013 Mar; 34(5):651-61. PubMed ID: 23229901 [TBL] [Abstract][Full Text] [Related]
10. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Jaros M; Hruska V; Stedrý M; Zusková I; Gas B Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981 [TBL] [Abstract][Full Text] [Related]
11. Separation of anti-tumor peptides by capillary electrophoresis in organic solvent containing background electrolytes. Idei M; Kiss E; Dobos Z; Hallgas B; Mészáros G; Hollósy F; Kéri G Electrophoresis; 2003 Mar; 24(5):829-33. PubMed ID: 12627444 [TBL] [Abstract][Full Text] [Related]
12. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration. Stĕdrý M; Jaros M; Hruska V; Gas B Electrophoresis; 2004 Oct; 25(18-19):3071-9. PubMed ID: 15472980 [TBL] [Abstract][Full Text] [Related]
13. Counterion condensation in short cationic peptides: limiting mobilities beyond the Onsager-Fuoss theory. Wernersson E; Heyda J; Kubíčková A; Křížek T; Coufal P; Jungwirth P Electrophoresis; 2012 Mar; 33(6):981-9. PubMed ID: 22528417 [TBL] [Abstract][Full Text] [Related]
14. Determination of homopolypeptide conformational changes by the modeling of electrophoretic mobilities. Plasson R; Cottet H Anal Chem; 2005 Sep; 77(18):6047-54. PubMed ID: 16159140 [TBL] [Abstract][Full Text] [Related]
15. Viscosity-dependent liquid slip at molecularly smooth hydrophobic surfaces. McBride SP; Law BM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):060601. PubMed ID: 20365109 [TBL] [Abstract][Full Text] [Related]
16. Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Ohshima H Adv Colloid Interface Sci; 2019 Oct; 272():101996. PubMed ID: 31421456 [TBL] [Abstract][Full Text] [Related]
17. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE. Piaggio MV; Peirotti MB; Deiber JA Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715 [TBL] [Abstract][Full Text] [Related]
18. The preparation of background electrolytes in capillary zone electrophoresis: golden rules and pitfalls. Beckers JL; Bocek P Electrophoresis; 2003 Jan; 24(3):518-35. PubMed ID: 12569542 [TBL] [Abstract][Full Text] [Related]
19. Peptide mapping by capillary zone electrophoresis: how close is theoretical simulation to experimental determination. Janini GM; Metral CJ; Issaq HJ J Chromatogr A; 2001 Jul; 924(1-2):291-306. PubMed ID: 11521876 [TBL] [Abstract][Full Text] [Related]
20. Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition. Berli CL; Piaggio MV; Deiber JA Electrophoresis; 2003 May; 24(10):1587-95. PubMed ID: 12761788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]