These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 23712490)

  • 21. Irreducible representation for nucleotide sequence physical properties and self-consistency of nearest-neighbor dimer sets.
    Licinio P; Guerra JC
    Biophys J; 2007 Mar; 92(6):2000-6. PubMed ID: 17189304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs.
    O'Toole AS; Miller S; Haines N; Zink MC; Serra MJ
    Nucleic Acids Res; 2006; 34(11):3338-44. PubMed ID: 16820533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating Energy Parameters for RNA Secondary Structure Predictions Using Both Experimental and Computational Data.
    Nishida S; Sakuraba S; Asai K; Hamada M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1645-1655. PubMed ID: 29994069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA.
    Allawi HT; SantaLucia J
    Biochemistry; 1998 Feb; 37(8):2170-9. PubMed ID: 9485363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nearest-Neighbor dsDNA Stability Analysis Using Alchemical Free-Energy Simulations.
    Rieger M; Zacharias M
    J Phys Chem B; 2022 May; 126(20):3640-3647. PubMed ID: 35549273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone.
    Kumar P; Sharma PK; Madsen CS; Petersen M; Nielsen P
    Chembiochem; 2013 Jun; 14(9):1072-4. PubMed ID: 23712945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of 3' double nucleotide overhangs that model the 3' ends of siRNA.
    O'Toole AS; Miller S; Serra MJ
    RNA; 2005 Apr; 11(4):512-6. PubMed ID: 15769878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop.
    Tanaka F; Kameda A; Yamamoto M; Ohuchi A
    Biochemistry; 2004 Jun; 43(22):7143-50. PubMed ID: 15170351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local cooperativity mechanism in the DNA melting transition.
    Ivanov V; Piontkovski D; Zocchi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041909. PubMed ID: 15903703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-dependent DNA structure: tetranucleotide conformational maps.
    Packer MJ; Dauncey MP; Hunter CA
    J Mol Biol; 2000 Jan; 295(1):85-103. PubMed ID: 10623510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.
    Tomcho JC; Tillman MR; Znosko BM
    Biochemistry; 2015 Sep; 54(34):5290-6. PubMed ID: 26286708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic analysis of stacking hybridization of oligonucleotides with DNA template.
    Pyshnyi DV; Pyshnaya I; Levina A; Goldberg E; Zarytova V; Knorre D; Ivanova E
    J Biomol Struct Dyn; 2001 Dec; 19(3):555-70. PubMed ID: 11790153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair.
    Wang Y; Wang Z; Wang Y; Liu T; Zhang W
    J Chem Phys; 2018 Jan; 148(4):045101. PubMed ID: 29390847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Watson-Crick base pairing controls excited-state decay in natural DNA.
    Bucher DB; Schlueter A; Carell T; Zinth W
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11366-9. PubMed ID: 25196546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide.
    Jolley EA; Znosko BM
    Nucleic Acids Res; 2017 Feb; 45(3):1479-1487. PubMed ID: 28180321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
    Lu ZJ; Turner DH; Mathews DH
    Nucleic Acids Res; 2006; 34(17):4912-24. PubMed ID: 16982646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of melting transitions of the DNA hairpins formed from the oligomer sequences d[GGATAC(X)4GTATCC] (X = A, T, G, C).
    Paner TM; Amaratunga M; Doktycz MJ; Benight AS
    Biopolymers; 1990 Dec; 29(14):1715-34. PubMed ID: 2207283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular recognition of Watson-Crick base-pair reversals in triple-helix formation: use of nonnatural oligonucleotide bases.
    Mohan V; Cheng YK; Marlow GE; Pettitt BM
    Biopolymers; 1993 Sep; 33(9):1317-25. PubMed ID: 8400029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.