BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 23712510)

  • 1. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots.
    Zhang L; Cui P; Zhang B; Gao F
    Chemistry; 2013 Jul; 19(28):9242-50. PubMed ID: 23712510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An "off-on" phosphorescent aptasensor for the detection of thrombin based on PRET.
    Xiong Y; Liang M; Cheng Y; Zou J; Li Y
    Analyst; 2018 Dec; 144(1):161-171. PubMed ID: 30371694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma.
    Wang Y; Bao L; Liu Z; Pang DW
    Anal Chem; 2011 Nov; 83(21):8130-7. PubMed ID: 21923110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ''off-on'' phosphorescent aptasensor switch for the detection of ATP.
    Xiong Y; Cheng Y; Wang L; Li Y
    Talanta; 2018 Dec; 190():226-234. PubMed ID: 30172503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.
    Arvand M; Mirroshandel AA
    Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles.
    Xie L; You L; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():110-5. PubMed ID: 23501724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.
    He Y; Wang HF; Yan XP
    Anal Chem; 2008 May; 80(10):3832-7. PubMed ID: 18407673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CTAB-capped Mn-doped ZnS quantum dots and label-free aptamer for room-temperature phosphorescence detection of mercury ions.
    Xie WY; Huang WT; Luo HQ; Li NB
    Analyst; 2012 Oct; 137(20):4651-3. PubMed ID: 22919701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Phosphorescence Turn-on Detection of DNA Based on Riboflavin-Modulated Manganese Doped Zinc Sulfide Quantum Dots.
    Gong Y; Fan Z
    J Fluoresc; 2016 Mar; 26(2):385-93. PubMed ID: 26658940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.
    Wu P; Zhao T; Tian Y; Wu L; Hou X
    Chemistry; 2013 Jun; 19(23):7473-9. PubMed ID: 23576296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone-Modified Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Sensing of Human Cancer Cells That Overexpress NQO1.
    Sung YM; Gayam SR; Hsieh PY; Hsu HY; Diau EW; Wu SP
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25961-9. PubMed ID: 26540617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of raceanisodamine hydrochloride and atropine sulfate in biological fluids.
    Wu H; Fan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():131-4. PubMed ID: 22336044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid.
    Bian W; Wang F; Wei Y; Wang L; Liu Q; Dong W; Shuang S; Choi MM
    Anal Chim Acta; 2015 Jan; 856():82-9. PubMed ID: 25542361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.
    Shan Y; Xu JJ; Chen HY
    Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer.
    Miao Y; Lv J; Yan G
    Biosens Bioelectron; 2017 Aug; 94():263-270. PubMed ID: 28288446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.
    Wu P; He Y; Wang HF; Yan XP
    Anal Chem; 2010 Feb; 82(4):1427-33. PubMed ID: 20092317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorescent sensing of Cr3+ with protein-functionalized Mn-doped ZnS quantum dots.
    Zhao T; Hou X; Xie YN; Wu L; Wu P
    Analyst; 2013 Nov; 138(21):6589-94. PubMed ID: 24000338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots.
    Bian W; Ma J; Guo W; Lu D; Fan M; Wei Y; Li Y; Shuang S; Choi MM
    Talanta; 2013 Nov; 116():794-800. PubMed ID: 24148476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots.
    Bian W; Ma J; Liu Q; Wei Y; Li Y; Dong C; Shuang S
    Luminescence; 2014 Mar; 29(2):151-7. PubMed ID: 23681976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Room-Temperature Phosphorescence of Mn-Doped ZnS Quantum Dots Composited with PDDA for Detection of Adriamycin.
    Liu CL; Hou CJ; Huo DQ
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2993-2999. PubMed ID: 29442985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.