BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23712532)

  • 1. Cetylpyridinium chloride activated trinitrotoluene explosive lights up robust and ultrahigh surface-enhanced resonance Raman scattering in a silver sol.
    Liu H; Lin D; Sun Y; Yang L; Liu J
    Chemistry; 2013 Jul; 19(27):8789-96. PubMed ID: 23712532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array.
    Zhou H; Zhang Z; Jiang C; Guan G; Zhang K; Mei Q; Liu R; Wang S
    Anal Chem; 2011 Sep; 83(18):6913-7. PubMed ID: 21853974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy.
    Liu M; Chen W
    Biosens Bioelectron; 2013 Aug; 46():68-73. PubMed ID: 23500479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid.
    Kaya M; Volkan M
    Anal Chem; 2012 Sep; 84(18):7729-35. PubMed ID: 22881404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method.
    Zhang C; Wang K; Han D; Pang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():387-91. PubMed ID: 24322757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems.
    Chen N; Ding P; Shi Y; Jin T; Su Y; Wang H; He Y
    Anal Chem; 2017 May; 89(9):5072-5078. PubMed ID: 28349688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO-Ag hybrids for ultrasensitive detection of trinitrotoluene by surface-enhanced Raman spectroscopy.
    He X; Wang H; Li Z; Chen D; Zhang Q
    Phys Chem Chem Phys; 2014 Jul; 16(28):14706-12. PubMed ID: 24920315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering.
    Aroca RF; Goulet PJ; dos Santos DS; Alvarez-Puebla RA; Oliveira ON
    Anal Chem; 2005 Jan; 77(2):378-82. PubMed ID: 15649031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions.
    Ren W; Zhu C; Wang E
    Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
    He X; Wang H; Li Z; Chen D; Liu J; Zhang Q
    Nanoscale; 2015 May; 7(18):8619-26. PubMed ID: 25899553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1- and b2-type bands invariant against aggregation of Ag nanoparticles.
    Kim K; Yoon JK; Lee HB; Shin D; Shin KS
    Langmuir; 2011 Apr; 27(8):4526-31. PubMed ID: 21405076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on contribution of charge transfer effect to surface-enhanced Raman scattering spectra of pyridine adsorbed on Ag(n) (n = 2-8) clusters.
    Liu S; Li Y; Zhao X; Liu X; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):205-12. PubMed ID: 21852188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates.
    Itoh T; Biju V; Ishikawa M; Kikkawa Y; Hashimoto K; Ikehata A; Ozaki Y
    J Chem Phys; 2006 Apr; 124(13):134708. PubMed ID: 16613469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 'sandwich' structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering.
    Gao W; Wang T; Zhu C; Sha P; Dong P; Wu X
    Talanta; 2022 Jan; 236():122824. PubMed ID: 34635214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach.
    Sivanesan A; Adamkiewicz W; Kalaivani G; Kamińska A; Waluk J; Hołyst R; Izake EL
    Analyst; 2015 Jan; 140(2):489-96. PubMed ID: 25374971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT.
    Jha SK; Ekinci Y; Agio M; Löffler JF
    Analyst; 2015 Aug; 140(16):5671-7. PubMed ID: 26144505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducible SERRS from structured gold surfaces.
    Mahajan S; Baumberg JJ; Russell AE; Bartlett PN
    Phys Chem Chem Phys; 2007 Dec; 9(45):6016-20. PubMed ID: 18004415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering.
    Han XX; Jia HY; Wang YF; Lu ZC; Wang CX; Xu WQ; Zhao B; Ozaki Y
    Anal Chem; 2008 Apr; 80(8):2799-804. PubMed ID: 18290672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.