BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23712551)

  • 1. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.
    Kazmierczak M; Zhang X; Chen B; Mulkey DK; Shi Y; Wagner PG; Pivaroff-Ward K; Sassic JK; Bayliss DA; Jegla T
    J Gen Physiol; 2013 Jun; 141(6):721-35. PubMed ID: 23712551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ether-à-go-go K
    Bauer CK; Schwarz JR
    J Physiol; 2018 Mar; 596(5):769-783. PubMed ID: 29333676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divalent cations slow activation of EAG family K+ channels through direct binding to S4.
    Zhang X; Bursulaya B; Lee CC; Chen B; Pivaroff K; Jegla T
    Biophys J; 2009 Jul; 97(1):110-20. PubMed ID: 19580749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate.
    Li X; Anishkin A; Liu H; van Rossum DB; Chintapalli SV; Sassic JK; Gallegos D; Pivaroff-Ward K; Jegla T
    J Gen Physiol; 2015 Nov; 146(5):357-74. PubMed ID: 26503718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.
    Schlichter LC; Jiang J; Wang J; Newell EW; Tsui FW; Lam D
    PLoS One; 2014; 9(2):e90024. PubMed ID: 24587194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating.
    Lin MC; Papazian DM
    Channels (Austin); 2007; 1(6):429-37. PubMed ID: 18690045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels.
    Wu W; Gardner A; Sachse FB; Sanguinetti MC
    Mol Pharmacol; 2016 Oct; 90(4):469-82. PubMed ID: 27502018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3.
    Silverman WR; Tang CY; Mock AF; Huh KB; Papazian DM
    J Gen Physiol; 2000 Nov; 116(5):663-78. PubMed ID: 11055995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening.
    Lin MC; Abramson J; Papazian DM
    J Gen Physiol; 2010 May; 135(5):415-31. PubMed ID: 20385745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.
    Lin TF; Jow GM; Fang HY; Fu SJ; Wu HH; Chiu MM; Jeng CJ
    PLoS One; 2014; 9(10):e110423. PubMed ID: 25333352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The subfamily-specific assembly of Eag and Erg K+ channels is determined by both the amino and the carboxyl recognition domains.
    Lin TF; Lin IW; Chen SC; Wu HH; Yang CS; Fang HY; Chiu MM; Jeng CJ
    J Biol Chem; 2014 Aug; 289(33):22815-22834. PubMed ID: 25008323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor.
    Zhou Y; Assmann SM; Jegla T
    J Gen Physiol; 2021 Jan; 153(1):. PubMed ID: 33275659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.
    Li X; Martinson AS; Layden MJ; Diatta FH; Sberna AP; Simmons DK; Martindale MQ; Jegla TJ
    J Exp Biol; 2015 Feb; 218(Pt 4):526-36. PubMed ID: 25696816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse Modulation of Neuronal K
    Dierich M; Evers S; Wilke BU; Leitner MG
    Front Mol Neurosci; 2018; 11():11. PubMed ID: 29440988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels.
    Garg V; Stary-Weinzinger A; Sanguinetti MC
    Mol Pharmacol; 2013 Apr; 83(4):805-13. PubMed ID: 23319419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External protons destabilize the activated voltage sensor in hERG channels.
    Shi YP; Cheng YM; Van Slyke AC; Claydon TW
    Eur Biophys J; 2014 Mar; 43(2-3):59-69. PubMed ID: 24362825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity.
    Wang ZJ; Soohoo SM; Tiwari PB; Piszczek G; Brelidze TI
    J Biol Chem; 2020 Mar; 295(13):4114-4123. PubMed ID: 32047112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent activation in EAG channels follows a ligand-receptor rather than a mechanical-lever mechanism.
    Malak OA; Gluhov GS; Grizel AV; Kudryashova KS; Sokolova OS; Loussouarn G
    J Biol Chem; 2019 Apr; 294(16):6506-6521. PubMed ID: 30808709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of EAG K(+) channel inactivation: molecular determinants of amplification by mutations and a small molecule.
    Garg V; Sachse FB; Sanguinetti MC
    J Gen Physiol; 2012 Sep; 140(3):307-24. PubMed ID: 22930803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Eag by Ca
    Bronk P; Kuklin EA; Gorur-Shandilya S; Liu C; Wiggin TD; Reed ML; Marder E; Griffith LC
    J Neurophysiol; 2018 May; 119(5):1665-1680. PubMed ID: 29364071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.