These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
666 related articles for article (PubMed ID: 23712567)
1. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567 [TBL] [Abstract][Full Text] [Related]
2. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
3. Climatic breadth of calling behaviour in two widespread Neotropical frogs: Insights from humidity extremes. Bonnefond A; Courtois EA; Sueur J; Sugai LSM; Llusia D Glob Chang Biol; 2020 Oct; 26(10):5431-5446. PubMed ID: 32654304 [TBL] [Abstract][Full Text] [Related]
4. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints. Sanabria EA; Quiroga LB; Martino AL J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):185-93. PubMed ID: 22311743 [TBL] [Abstract][Full Text] [Related]
5. Predicting the physiological performance of ectotherms in fluctuating thermal environments. Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077 [TBL] [Abstract][Full Text] [Related]
6. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
7. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412 [TBL] [Abstract][Full Text] [Related]
8. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918 [TBL] [Abstract][Full Text] [Related]
9. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Perotti MG; Bonino MF; Ferraro D; Cruz FB Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379 [TBL] [Abstract][Full Text] [Related]
10. Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Davies SJ; McGeoch MA; Clusella-Trullas S Comp Biochem Physiol A Mol Integr Physiol; 2015 Nov; 189():11-20. PubMed ID: 26164532 [TBL] [Abstract][Full Text] [Related]
11. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. Anderson RCO; Bovo RP; Andrade DV J Therm Biol; 2018 May; 74():77-83. PubMed ID: 29801654 [TBL] [Abstract][Full Text] [Related]
12. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. Clarke DN; Zani PA J Exp Biol; 2012 Apr; 215(Pt 7):1117-27. PubMed ID: 22399656 [TBL] [Abstract][Full Text] [Related]
13. The complex drivers of thermal acclimation and breadth in ectotherms. Rohr JR; Civitello DJ; Cohen JM; Roznik EA; Sinervo B; Dell AI Ecol Lett; 2018 Sep; 21(9):1425-1439. PubMed ID: 30009486 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
15. Seasonal metabolic changes in a year-round reproductively active subtropical tree-frog (Hypsiboas prasinus). Kiss AC; de Carvalho JE; Navas CA; Gomes FR Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):182-8. PubMed ID: 18840537 [TBL] [Abstract][Full Text] [Related]
16. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G; Ma CS J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [TBL] [Abstract][Full Text] [Related]
17. Floral reflectance, color, and thermoregulation: what really explains geographic variation in thermal acclimation ability of ectotherms? Lacey EP; Lovin ME; Richter SJ; Herington DA Am Nat; 2010 Mar; 175(3):335-49. PubMed ID: 20100107 [TBL] [Abstract][Full Text] [Related]
18. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
19. Climate change, multiple stressors, and the decline of ectotherms. Rohr JR; Palmer BD Conserv Biol; 2013 Aug; 27(4):741-51. PubMed ID: 23773091 [TBL] [Abstract][Full Text] [Related]
20. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Tomanek L J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]