These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 23712680)

  • 1. Dynamics of revolution time variability in cycling pattern: voluntary intent can alter the long-range autocorrelations.
    Warlop TB; Bollens B; Crevecoeur F; Detrembleur C; Lejeune TM
    Ann Biomed Eng; 2013 Aug; 41(8):1604-12. PubMed ID: 23712680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freely chosen pedal rate during free cycling on a roller and ergometer cycling.
    Leirdal S; Ettema G
    Eur J Appl Physiol; 2009 Aug; 106(6):799-805. PubMed ID: 19466445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors associated with the selection of the freely chosen cadence in non-cyclists.
    Whitty AG; Murphy AJ; Coutts AJ; Watsford ML
    Eur J Appl Physiol; 2009 Jul; 106(5):705-12. PubMed ID: 19430807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises.
    Hansen EA; Voigt M; Kersting UG; Madeleine P
    Motor Control; 2014 Jul; 18(3):297-309. PubMed ID: 24457176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness.
    Ettema G; LorĂ¥s H; Leirdal S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e94-101. PubMed ID: 18178104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance and strength training effects on physiological and muscular parameters during prolonged cycling.
    Hausswirth C; Argentin S; Bieuzen F; Le Meur Y; Couturier A; Brisswalter J
    J Electromyogr Kinesiol; 2010 Apr; 20(2):330-9. PubMed ID: 19473854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of series length on statistical precision and sensitivity of autocorrelation assessment in human locomotion.
    Warlop TB; Bollens B; Detrembleur C; Stoquart G; Lejeune T; Crevecoeur F
    Hum Mov Sci; 2017 Oct; 55():31-42. PubMed ID: 28750259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal properties and short-term correlations in motor control in cycling: influence of a cognitive challenge.
    Gilfriche P; Arsac LM; Blons E; Deschodt-Arsac V
    Hum Mov Sci; 2019 Oct; 67():102518. PubMed ID: 31542675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two kinematic synergies in voluntary whole-body movements during standing.
    Freitas SM; Duarte M; Latash ML
    J Neurophysiol; 2006 Feb; 95(2):636-45. PubMed ID: 16267118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG normalization to study muscle activation in cycling.
    Rouffet DM; Hautier CA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):866-78. PubMed ID: 17507240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.
    Vercruyssen F; Suriano R; Bishop D; Hausswirth C; Brisswalter J
    Br J Sports Med; 2005 May; 39(5):267-72. PubMed ID: 15849289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlates of simulated hill climb cycling performance.
    Davison RC; Swan D; Coleman D; Bird S
    J Sports Sci; 2000 Feb; 18(2):105-10. PubMed ID: 10718566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance at high pedaling cadences in well-trained cyclists.
    Mora-Rodriguez R; Aguado-Jimenez R
    Med Sci Sports Exerc; 2006 May; 38(5):953-7. PubMed ID: 16672850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pedaling cadence and power output on mechanomyographic amplitude and mean power frequency during submaximal cycle ergometry.
    Hendrix CR; Bull AJ; Housh TJ; Rana SR; Cramer JT; Beck TW; Weir JP; Malek MH; Mielke M
    Electromyogr Clin Neurophysiol; 2008; 48(5):195-201. PubMed ID: 18754528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the intensity of a conditioning contraction on the subsequent twitch torque and maximal voluntary concentric torque.
    Fukutani A; Miyamoto N; Kanehisa H; Yanai T; Kawakami Y
    J Electromyogr Kinesiol; 2012 Aug; 22(4):560-5. PubMed ID: 22513368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories.
    Kuznetsov N; Bonnette S; Gao J; Riley MA
    Ann Biomed Eng; 2013 Aug; 41(8):1646-60. PubMed ID: 22956160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences.
    Sarre G; Lepers R; van Hoecke J
    J Sports Sci; 2005 Jul; 23(7):693-701. PubMed ID: 16195019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of exercise duration on optimal pedaling rate choice in triathletes.
    Vercruyssen F; Hausswirth C; Smith D; Brisswalter J
    Can J Appl Physiol; 2001 Feb; 26(1):44-54. PubMed ID: 11173669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.