These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23712898)

  • 1. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties.
    Li C; Bolisetty S; Mezzenga R
    Adv Mater; 2013 Jul; 25(27):3694-700. PubMed ID: 23712898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions.
    Bolisetty S; Vallooran JJ; Adamcik J; Handschin S; Gramm F; Mezzenga R
    J Colloid Interface Sci; 2011 Sep; 361(1):90-6. PubMed ID: 21652047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid Templated Gold Aerogels.
    Nyström G; Fernández-Ronco MP; Bolisetty S; Mazzotti M; Mezzenga R
    Adv Mater; 2016 Jan; 28(3):472-8. PubMed ID: 26592185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of Gold Nanorods on HSA Amyloid Fibrils to Develop a Conductive Nanoscaffold for Potential Biomedical and Biosensing Applications.
    Taheri RA; Akhtari Y; Tohidi Moghadam T; Ranjbar B
    Sci Rep; 2018 Jun; 8(1):9333. PubMed ID: 29921839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Amyloid Tactoids.
    Yuan Y; Almohammadi H; Probst J; Mezzenga R
    Adv Mater; 2021 Dec; 33(51):e2106155. PubMed ID: 34658087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable plasmon coupling in distance-controlled gold nanoparticles.
    Lange H; Juárez BH; Carl A; Richter M; Bastús NG; Weller H; Thomsen C; von Klitzing R; Knorr A
    Langmuir; 2012 Jun; 28(24):8862-6. PubMed ID: 22416809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical sensing and imaging with metallic nanorods.
    Murphy CJ; Gole AM; Hunyadi SE; Stone JW; Sisco PN; Alkilany A; Kinard BE; Hankins P
    Chem Commun (Camb); 2008 Feb; (5):544-57. PubMed ID: 18209787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch.
    Zeng J; Goldfeld D; Xia Y
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4169-73. PubMed ID: 23494970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restriction of microwave-induced amyloid fibrillar growth by gold nanoparticles.
    Singh AK; Bhattacharya S; Halder K; Dasgupta S; Roy A
    Int J Biol Macromol; 2020 May; 151():212-219. PubMed ID: 32068051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films.
    Fu Y; Zhang J; Nowaczyk K; Lakowicz JR
    Chem Commun (Camb); 2013 Nov; 49(92):10874-6. PubMed ID: 24129372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between gold nanoparticles and amyloid β25-35 peptide.
    Peng J; Weng J; Ren L; Sun LP
    IET Nanobiotechnol; 2014 Dec; 8(4):295-303. PubMed ID: 25429511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical aspects of molecular probes near nanostructured gold surfaces.
    Ghosh SK; Pal T
    Phys Chem Chem Phys; 2009 May; 11(20):3831-44. PubMed ID: 19440609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S; Lehtovaara L; Enkovaara J; Häkkinen H
    ACS Nano; 2013 Nov; 7(11):10263-70. PubMed ID: 24107127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling.
    Greco F; Bellacicca A; Gemmi M; Cappello V; Mattoli V; Milani P
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7060-5. PubMed ID: 25811100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes.
    Liu Z; Wang X; Li M; Wu W
    Nanotechnology; 2015 Nov; 26(46):465708. PubMed ID: 26511782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid-derived peptide forms self-assembled monolayers on gold nanoparticle with a curvature-dependent β-sheet structure.
    Shaw CP; Middleton DA; Volk M; Lévy R
    ACS Nano; 2012 Feb; 6(2):1416-26. PubMed ID: 22242947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles.
    John T; Gladytz A; Kubeil C; Martin LL; Risselada HJ; Abel B
    Nanoscale; 2018 Dec; 10(45):20894-20913. PubMed ID: 30225490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled peptide nanofiber templated one-dimensional gold nanostructures exhibiting resistive switching.
    Acar H; Genc R; Urel M; Erkal TS; Dana A; Guler MO
    Langmuir; 2012 Nov; 28(47):16347-54. PubMed ID: 23110318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.