BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23713139)

  • 1. A model for generating several adaptive phenotypes from a single genetic event: Saccharomyces cerevisiae GAP1 as a potential bet-hedging switch.
    Møller HD; Andersen KS; Regenberg B
    Commun Integr Biol; 2013 May; 6(3):e23933. PubMed ID: 23713139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus.
    Gresham D; Usaite R; Germann SM; Lisby M; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18551-6. PubMed ID: 20937885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights.
    Morawska LP; Hernandez-Valdes JA; Kuipers OP
    WIREs Mech Dis; 2022 Mar; 14(2):e1544. PubMed ID: 35266649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective bet-hedging through growth rate dependent stability.
    de Groot DH; Tjalma AJ; Bruggeman FJ; van Nimwegen E
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2211091120. PubMed ID: 36780518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae.
    Regenberg B; Hansen J
    Yeast; 2000 Sep; 16(12):1111-9. PubMed ID: 10953083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae.
    Donaton MC; Holsbeeks I; Lagatie O; Van Zeebroeck G; Crauwels M; Winderickx J; Thevelein JM
    Mol Microbiol; 2003 Nov; 50(3):911-29. PubMed ID: 14617151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evolution of bet hedging.
    Beaumont HJ; Gallie J; Kost C; Ferguson GC; Rainey PB
    Nature; 2009 Nov; 462(7269):90-3. PubMed ID: 19890329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed bet-hedging resilience strategies under environmental fluctuations.
    Ogura M; Wakaiki M; Rubin H; Preciado VM
    Phys Rev E; 2017 May; 95(5-1):052404. PubMed ID: 28618624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease.
    Merhi A; Gérard N; Lauwers E; Prévost M; André B
    PLoS One; 2011 Apr; 6(4):e18457. PubMed ID: 21526172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term insurance versus long-term bet-hedging strategies as adaptations to variable environments.
    Haaland TR; Wright J; Tufto J; Ratikainen II
    Evolution; 2019 Feb; 73(2):145-157. PubMed ID: 30549260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression.
    Jauniaux JC; Grenson M
    Eur J Biochem; 1990 May; 190(1):39-44. PubMed ID: 2194797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R; Baiges I; Mas A; Guillamon JM
    J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bet-hedging strategies in expanding populations.
    Villa Martín P; Muñoz MA; Pigolotti S
    PLoS Comput Biol; 2019 Apr; 15(4):e1006529. PubMed ID: 30998676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae.
    Springael JY; André B
    Mol Biol Cell; 1998 Jun; 9(6):1253-63. PubMed ID: 9614172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors.
    Merhi A; André B
    Mol Cell Biol; 2012 Nov; 32(22):4510-22. PubMed ID: 22966204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bet hedging or not? A guide to proper classification of microbial survival strategies.
    de Jong IG; Haccou P; Kuipers OP
    Bioessays; 2011 Mar; 33(3):215-23. PubMed ID: 21254151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When sensing is gambling: An experimental system reveals how plasticity can generate tunable bet-hedging strategies.
    Maxwell CS; Magwene PM
    Evolution; 2017 Apr; 71(4):859-871. PubMed ID: 28213964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Localisation of the cis-acting dominant pgr regulatory mutation in the structural gene of this permease.
    Grenson M; Acheroy B
    Mol Gen Genet; 1982; 188(2):261-5. PubMed ID: 6759873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shortsighted Evolution Constrains the Efficacy of Long-Term Bet Hedging.
    Libby E; Ratcliff WC
    Am Nat; 2019 Mar; 193(3):409-423. PubMed ID: 30794447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.