These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2371336)

  • 1. The patterns of spontaneous oculomotor activity during weightlessness and readaptation to gravity.
    Kornilova LN; Goncharenko AM; Grigorova V; Manev A
    Physiologist; 1990 Feb; 33(1 Suppl):S23-8. PubMed ID: 2371336
    [No Abstract]   [Full Text] [Related]  

  • 2. [The effect of weightlessness on vestibular function].
    Gorgiladze GI; Matveev AD
    Kosm Biol Aviakosm Med; 1991; 25(1):17-21. PubMed ID: 2046292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Characteristics of optokinetic, opto-oculomotor and vestibulo-oculomotor reactions in weightlessness].
    Kornilova LN; Bodo G
    Vestn Otorinolaringol; 1990; (3):37-43. PubMed ID: 2382336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and dynamic vestibulo-cervico-ocular responses after prolonged exposure to microgravity.
    Kornilova LN; Sagalovitch SV; Temnikova VV; Yakushev AG
    J Vestib Res; 2007; 17(5-6):217-26. PubMed ID: 18626133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is central optokinetic nystagmus gravity-dependent?
    Grigorova V; Kornilova L; Stambolieva K
    J Gravit Physiol; 1997 Jul; 4(2):P107-8. PubMed ID: 11540664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to modified otolith input.
    Young LR
    Rev Oculomot Res; 1985; 1():155-62. PubMed ID: 3940027
    [No Abstract]   [Full Text] [Related]  

  • 7. Modifications of spontaneous oculomotor activity in microgravitational conditions.
    Kornilova LN; Goncharenko AM; Polyakov VV; Grigorova V; Manev A
    Acta Astronaut; 1991; 23():79-84. PubMed ID: 11537151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in gravitational state cause changes in ocular torsion.
    Diamond SG; Markham CH
    J Gravit Physiol; 1998 Jul; 5(1):P109-10. PubMed ID: 11542311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-Body Movements in Long-Term Weightlessness: Hierarchies of the Controlled Variables Are Gravity-Dependent.
    Casellato C; Pedrocchi A; Ferrigno G
    J Mot Behav; 2017; 49(5):568-579. PubMed ID: 28027021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity dependence of ocular drift in patients with cerebellar downbeat nystagmus.
    Marti S; Palla A; Straumann D
    Ann Neurol; 2002 Dec; 52(6):712-21. PubMed ID: 12447924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A tracking function of human eye in microgravity and during readaptation to earth's gravity].
    Kornilova LN
    Aviakosm Ekolog Med; 2001; 35(6):30-8. PubMed ID: 11915749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gravity on vestibular nystagmus.
    Oosterveld WJ; van der Laarse WD
    Aerosp Med; 1969 Apr; 40(4):382-5. PubMed ID: 5305045
    [No Abstract]   [Full Text] [Related]  

  • 13. [Semicircular canal function following a flight aboard biosatellite "Cosmos-936"].
    Shipov AA; Ovechkin VG
    Kosm Biol Aviakosm Med; 1980; 14(2):25-30. PubMed ID: 7392553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parabolic flight as a tool to measure ocular counterrotation in a reduced force environment.
    Wetzig J; Hofstetter-Degen K; Kass JR; Reiser M
    Microgravity Sci Technol; 1991 Jun; 4(1):39-44. PubMed ID: 11541452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular function and sensory interaction in space flight.
    Kornilova LN; Grigorova V; Bodo G
    J Vestib Res; 1993; 3(3):219-30. PubMed ID: 8275258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights.
    Moore ST; Clément G; Dai M; Raphan T; Solomon D; Cohen B
    J Vestib Res; 2003; 13(4-6):377-93. PubMed ID: 15096679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pattern of spontaneous oculomotor activity in weightlessness and the readaptation period].
    Kornilova LN; Goncharenko AM; Grigorova V; Manev A
    Aviakosm Ekolog Med; 1992; 26(2):15-22. PubMed ID: 1301093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is an internal model of head orientation necessary for oculomotor control?
    Barnett-Cowan M; Dyde RT; Harris LR
    Ann N Y Acad Sci; 2005 Apr; 1039():314-24. PubMed ID: 15826985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swimming velocity of Paramecium under the conditions of weightlessness.
    Hemmersbach-Krause R; Briegleb W; Vogel K; Hader DP
    Acta Protozool; 1993 Oct; 32(4):229-36. PubMed ID: 11541117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deleterious effect on astronaut capability of vestibulo-ocular disturbance during spacecraft roll acceleration.
    Grose VL
    Aerosp Med; 1967 Nov; 38(11):1138-44. PubMed ID: 5299275
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.