BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23713479)

  • 1. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.
    Yonetani Y; Kono H
    J Phys Chem B; 2013 Jun; 117(25):7535-45. PubMed ID: 23713479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the sliding movement of the lac repressor nonspecifically bound to DNA.
    Furini S; Domene C; Cavalcanti S
    J Phys Chem B; 2010 Feb; 114(6):2238-45. PubMed ID: 20095570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations.
    Furini S; Domene C
    J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The natural DNA bending angle in the lac repressor headpiece-O1 operator complex is determined by protein-DNA contacts and water release.
    Barr D; van der Vaart A
    Phys Chem Chem Phys; 2012 Feb; 14(6):2070-7. PubMed ID: 22234444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition mechanism between Lac repressor and DNA with correlation network analysis.
    Xu L; Ye W; Jiang C; Yang J; Zhang J; Feng Y; Luo R; Chen HF
    J Phys Chem B; 2015 Feb; 119(7):2844-56. PubMed ID: 25633018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy calculations for the relative binding affinity between DNA and lambda-repressor.
    Saito M; Sarai A
    Proteins; 2003 Aug; 52(2):129-36. PubMed ID: 12833537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.
    Ohyama T; Hayakawa M; Nishikawa S; Kurita N
    J Comput Chem; 2011 Jun; 32(8):1661-70. PubMed ID: 21328406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study.
    Sun L; Tabaka M; Hou S; Li L; Burdzy K; Aksimentiev A; Maffeo C; Zhang X; Holyst R
    PLoS One; 2016; 11(3):e0152002. PubMed ID: 27008630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes.
    Kalodimos CG; Biris N; Bonvin AM; Levandoski MM; Guennuegues M; Boelens R; Kaptein R
    Science; 2004 Jul; 305(5682):386-9. PubMed ID: 15256668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.
    Wang J; Shao Q; Xu Z; Liu Y; Yang Z; Cossins BP; Jiang H; Chen K; Shi J; Zhu W
    J Phys Chem B; 2014 Jan; 118(1):134-43. PubMed ID: 24350625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Case study on temperature-accelerated molecular dynamics simulation of ligand dissociation: inducer dissociation from the Lac repressor protein.
    Hu Y; Liu H
    J Phys Chem A; 2014 Oct; 118(39):9272-9. PubMed ID: 24941022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of specific and nonspecific DNA by human lactoferrin.
    Guschina TA; Soboleva SE; Nevinsky GA
    J Mol Recognit; 2013 Mar; 26(3):136-48. PubMed ID: 23345104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4',6-diamidino-2-phenylindole and DNA duplexes in solution.
    Spacková N; Cheatham TE; Ryjácek F; Lankas F; Van Meervelt L; Hobza P; Sponer J
    J Am Chem Soc; 2003 Feb; 125(7):1759-69. PubMed ID: 12580601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface.
    Santos SM; Costa PJ; Lankshear MD; Beer PD; Félix V
    J Phys Chem B; 2010 Sep; 114(34):11173-80. PubMed ID: 20690692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of micelle/water and liposome/water partition coefficients based on molecular dynamics simulations, COSMO-RS, and COSMOmic.
    Ingram T; Storm S; Kloss L; Mehling T; Jakobtorweihen S; Smirnova I
    Langmuir; 2013 Mar; 29(11):3527-37. PubMed ID: 23398189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models.
    Marklund EG; Mahmutovic A; Berg OG; Hammar P; van der Spoel D; Fange D; Elf J
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19796-801. PubMed ID: 24222688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.