These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 23713553)

  • 1. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests.
    Phillips RP; Brzostek E; Midgley MG
    New Phytol; 2013 Jul; 199(1):41-51. PubMed ID: 23713553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species.
    Liese R; Lübbe T; Albers NW; Meier IC
    Tree Physiol; 2018 Jan; 38(1):83-95. PubMed ID: 29126247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.
    Cheeke TE; Phillips RP; Brzostek ER; Rosling A; Bever JD; Fransson P
    New Phytol; 2017 Apr; 214(1):432-442. PubMed ID: 27918073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbuscular Mycorrhizal Tree Communities Have Greater Soil Fungal Diversity and Relative Abundances of Saprotrophs and Pathogens than Ectomycorrhizal Tree Communities.
    Eagar AC; Mushinski RM; Horning AL; Smemo KA; Phillips RP; Blackwood CB
    Appl Environ Microbiol; 2022 Jan; 88(1):e0178221. PubMed ID: 34669435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
    Chen W; Koide RT; Adams TS; DeForest JL; Cheng L; Eissenstat DM
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8741-6. PubMed ID: 27432986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests.
    Keller AB; Phillips RP
    New Phytol; 2019 Apr; 222(1):556-564. PubMed ID: 30299541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tree-mycorrhizal associations detected remotely from canopy spectral properties.
    Fisher JB; Sweeney S; Brzostek ER; Evans TP; Johnson DJ; Myers JA; Bourg NA; Wolf AT; Howe RW; Phillips RP
    Glob Chang Biol; 2016 Jul; 22(7):2596-607. PubMed ID: 27282323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhizal associations of temperate forest seedlings mediate rhizodeposition, but not soil carbon storage, under elevated nitrogen availability.
    Fitch AA; Goldsmith SB; Lankau RA; Wurzburger N; Shortt ZD; Vrattos A; Laurent EN; Hicks Pries CE
    Glob Chang Biol; 2024 Aug; 30(8):e17446. PubMed ID: 39109391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects.
    Phillips RP; Fahey TJ
    Ecology; 2006 May; 87(5):1302-13. PubMed ID: 16761608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.
    Lin G; McCormack ML; Ma C; Guo D
    New Phytol; 2017 Feb; 213(3):1440-1451. PubMed ID: 27678253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.
    Averill C; Dietze MC; Bhatnagar JM
    Glob Chang Biol; 2018 Oct; 24(10):4544-4553. PubMed ID: 30051940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycorrhizal and environmental controls over root trait-decomposition linkage of woody trees.
    Jiang L; Wang H; Li S; Fu X; Dai X; Yan H; Kou L
    New Phytol; 2021 Jan; 229(1):284-295. PubMed ID: 32761622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts.
    Jo I; Fei S; Oswalt CM; Domke GM; Phillips RP
    Sci Adv; 2019 Apr; 5(4):eaav6358. PubMed ID: 30989116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest.
    Valverde-Barrantes OJ; Smemo KA; Feinstein LM; Kershner MW; Blackwood CB
    Oecologia; 2018 Mar; 186(3):731-741. PubMed ID: 29243085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycorrhizal associations and the spatial structure of an old-growth forest community.
    Johnson DJ; Clay K; Phillips RP
    Oecologia; 2018 Jan; 186(1):195-204. PubMed ID: 29086005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tree biomass allocation differs by mycorrhizal association.
    Jevon FV; Lang AK
    Ecology; 2022 Jun; 103(6):e3688. PubMed ID: 35324010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.
    Eissenstat DM; Kucharski JM; Zadworny M; Adams TS; Koide RT
    New Phytol; 2015 Oct; 208(1):114-24. PubMed ID: 25970701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest.
    Brzostek ER; Dragoni D; Brown ZA; Phillips RP
    New Phytol; 2015 Jun; 206(4):1274-82. PubMed ID: 25627914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests.
    Ward EB; Duguid MC; Kuebbing SE; Lendemer JC; Bradford MA
    New Phytol; 2022 Sep; 235(5):1701-1718. PubMed ID: 35704030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The below-ground carbon and nitrogen cycling patterns of different mycorrhizal forests on the eastern Qinghai-Tibetan Plateau.
    Zhang M; Liu S; Chen M; Chen J; Cao X; Xu G; Xing H; Li F; Shi Z
    PeerJ; 2022; 10():e14028. PubMed ID: 36124133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.