These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23713830)

  • 1. Synthesis of monolayer graphene having a negligible amount of wrinkles by stress relaxation.
    Mun JH; Cho BJ
    Nano Lett; 2013 Jun; 13(6):2496-9. PubMed ID: 23713830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films.
    Cho JH; Gorman JJ; Na SR; Cullinan M
    Carbon N Y; 2017 May; 115():441-448. PubMed ID: 28669999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates.
    Deng B; Pang Z; Chen S; Li X; Meng C; Li J; Liu M; Wu J; Qi Y; Dang W; Yang H; Zhang Y; Zhang J; Kang N; Xu H; Fu Q; Qiu X; Gao P; Wei Y; Liu Z; Peng H
    ACS Nano; 2017 Dec; 11(12):12337-12345. PubMed ID: 29191004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.
    Liu L; Zhou H; Cheng R; Chen Y; Lin YC; Qu Y; Bai J; Ivanov IA; Liu G; Huang Y; Duan X
    J Mater Chem; 2012 Jan; 22(4):1498-1503. PubMed ID: 25414547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films.
    Thiele S; Reina A; Healey P; Kedzierski J; Wyatt P; Hsu PL; Keast C; Schaefer J; Kong J
    Nanotechnology; 2010 Jan; 21(1):015601. PubMed ID: 19946163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate.
    Nezich D; Reina A; Kong J
    Nanotechnology; 2012 Jan; 23(1):015701. PubMed ID: 22156239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate.
    Dou WD; Yang Q; Lee CS
    Nanotechnology; 2013 May; 24(18):185603. PubMed ID: 23575390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer.
    Lou G; Ouyang Y; Xie Y; Wang W; Liu Z
    Nanotechnology; 2021 Aug; 32(47):. PubMed ID: 34375954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source.
    Wang L; Sun J; Guo W; Dong Y; Xie Y; Xiong F; Du Z; Li L; Deng J; Xu C
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications.
    Lee SH; Kim JH; Park BJ; Park J; Kim HS; Yoon SG
    Nanotechnology; 2017 Feb; 28(7):075205. PubMed ID: 28094242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth.
    Komlenok M; Pivovarov P; Popovich A; Cheverikin V; Romshin A; Rybin M; Obraztsova E
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.