BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23713852)

  • 1. Fine control over the size of surfactant-polyelectrolyte nanoparticles by hydrodynamic flow focusing.
    Tresset G; Marculescu C; Salonen A; Ni M; Iliescu C
    Anal Chem; 2013 Jun; 85(12):5850-6. PubMed ID: 23713852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip controlled surfactant-DNA coil-globule transition by rapid solvent exchange using hydrodynamic flow focusing.
    Iliescu C; Mărculescu C; Venkataraman S; Languille B; Yu H; Tresset G
    Langmuir; 2014 Nov; 30(44):13125-36. PubMed ID: 25351469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyelectrolyte-surfactant complexes on solid surface.
    Kundu S
    J Colloid Interface Sci; 2010 Apr; 344(2):547-55. PubMed ID: 20096846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing.
    Lo CT; Jahn A; Locascio LE; Vreeland WN
    Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.
    Mehan S; Aswal VK; Kohlbrecher J
    Langmuir; 2014 Aug; 30(33):9941-50. PubMed ID: 25079825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposites of lung surfactant and biodegradable cationic nanoparticles improve transfection efficiency to lung cells.
    Nguyen J; Reul R; Betz T; Dayyoub E; Schmehl T; Gessler T; Bakowsky U; Seeger W; Kissel T
    J Control Release; 2009 Nov; 140(1):47-54. PubMed ID: 19666064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution.
    Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2012 Jun; 28(25):9288-97. PubMed ID: 22655980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mixing on the formation of complexes of hyperbranched cationic polyelectrolytes and anionic surfactants.
    Mezei A; Mészáros R; Varga I; Gilányi T
    Langmuir; 2007 Apr; 23(8):4237-47. PubMed ID: 17335262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study.
    Lim JM; Bertrand N; Valencia PM; Rhee M; Langer R; Jon S; Farokhzad OC; Karnik R
    Nanomedicine; 2014 Feb; 10(2):401-9. PubMed ID: 23969105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction study of the structure of carboxymethylcellulose-cationic surfactant complexes.
    Trabelsi S; Albouy PA; Impéror-Clerc M; Guillot S; Langevin D
    Chemphyschem; 2007 Nov; 8(16):2379-85. PubMed ID: 17926316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution.
    Wang X; Wang J; Wang Y; Yan H
    Langmuir; 2004 Oct; 20(21):9014-8. PubMed ID: 15461481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of thermo-sensitive CS-g-PNIPAM/CMC complex nanoparticles for controlled release of 5-FU.
    Zhang T; Li G; Guo L; Chen H
    Int J Biol Macromol; 2012 Dec; 51(5):1109-15. PubMed ID: 22981819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride.
    Yaghmur A; Ghazal A; Ghazal R; Dimaki M; Svendsen WE
    Phys Chem Chem Phys; 2019 Jun; 21(24):13005-13013. PubMed ID: 31165825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.
    Fang A; Cathala B
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):81-6. PubMed ID: 20833004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thermodynamic stability of the mixtures of hyperbranched poly(ethyleneimine) and sodium dodecyl sulfate at low surfactant-to-polyelectrolyte ratios.
    Mészáros R
    J Colloid Interface Sci; 2009 Oct; 338(2):444-9. PubMed ID: 19616217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.