BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23713905)

  • 1. Interaction of non-phosphorylated liver pyruvate kinase with fructose 1,6-bisphosphate and peptides that mimic the phosphorylatable N-terminus of the enzyme.
    Faustova I; Järv J
    Protein Pept Lett; 2013 Nov; 20(11):1200-3. PubMed ID: 23713905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation of ligand docking to L-type pyruvate kinase subunit.
    Kuznetsov A; Faustova I; Järv J
    Comput Biol Chem; 2014 Feb; 48():40-4. PubMed ID: 24316416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate.
    Jurica MS; Mesecar A; Heath PJ; Shi W; Nowak T; Stoddard BL
    Structure; 1998 Feb; 6(2):195-210. PubMed ID: 9519410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis.
    Dombrauckas JD; Santarsiero BD; Mesecar AD
    Biochemistry; 2005 Jul; 44(27):9417-29. PubMed ID: 15996096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The allosteric effect of fructose bisphosphate on muscle pyruvate kinase studied by infrared spectroscopy.
    Kumar S; Barth A
    J Phys Chem B; 2011 Oct; 115(39):11501-5. PubMed ID: 21870844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes.
    Petchampai N; Murillo-Solano C; Isoe J; Pizarro JC; Scaraffia PY
    Insect Biochem Mol Biol; 2019 Jan; 104():82-90. PubMed ID: 30578824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphate moiety of phosphoenolpyruvate does NOT contribute to allosteric regulation of liver pyruvate kinase by fructose-1,6-bisphosphate
    Chappell BM; Fenton AW
    Arch Biochem Biophys; 2020 Nov; 695():108633. PubMed ID: 33075302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and allosteric consequences of mutations in the subunit and domain interfaces and the allosteric site of yeast pyruvate kinase.
    Fenton AW; Blair JB
    Arch Biochem Biophys; 2002 Jan; 397(1):28-39. PubMed ID: 11747307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase.
    Kharalkar SS; Joshi GS; Musayev FN; Fornabaio M; Abraham DJ; Safo MK
    Chem Biodivers; 2007 Nov; 4(11):2603-17. PubMed ID: 18027374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase.
    Tripathi A; Safo MK
    Methods Mol Biol; 2012; 796():351-67. PubMed ID: 22052500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing the interactions in the fructose 1,6-bisphosphate binding site of human liver pyruvate kinase that contribute to allostery.
    Ishwar A; Tang Q; Fenton AW
    Biochemistry; 2015 Feb; 54(7):1516-24. PubMed ID: 25629396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat liver pyruvate kinase: influence of ligands on activity and fructose 1,6-bisphosphate binding.
    Blair JB; Walker RG
    Arch Biochem Biophys; 1984 Jul; 232(1):202-13. PubMed ID: 6742850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose 1,6-bisphosphate-activated pyruvate kinase from E. coli: ligand promoted conformational changes.
    Speranza ML; Valentini G; Ferri G; Malcovati M
    Ital J Biochem; 1992; 41(3):200-11. PubMed ID: 1500282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of pyruvate kinase of Escherichia coli. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-bisphosphate.
    Waygood EB; Mort JS; Sanwal BD
    Biochemistry; 1976 Jan; 15(2):277-82. PubMed ID: 764863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of pyruvate kinase type K is restricted to the dimeric form.
    Weernink PA; Rijksen G; Mascini EM; Staal GE
    Biochim Biophys Acta; 1992 May; 1121(1-2):61-8. PubMed ID: 1599952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic modification of pig and rat liver pyruvate kinase type L including phosphorylatable site.
    Bergström G; Ekman P; Humble E; Engström L
    Biochim Biophys Acta; 1978 Feb; 532(2):259-67. PubMed ID: 623783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant negative role of the glutamic acid residue conserved in the pyruvate kinase M(1) isozyme in the heterotropic allosteric effect involving fructose-1,6-bisphosphate.
    Ikeda Y; Taniguchi N; Noguchi T
    J Biol Chem; 2000 Mar; 275(13):9150-6. PubMed ID: 10734049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics.
    Pilkis SJ; el-Maghrabi MR; Claus TH
    Diabetes Care; 1990 Jun; 13(6):582-99. PubMed ID: 2162755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis.
    Yang J; Liu H; Liu X; Gu C; Luo R; Chen HF
    J Chem Inf Model; 2016 Jun; 56(6):1184-1192. PubMed ID: 27227511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric regulation of human liver pyruvate kinase by peptides that mimic the phosphorylated/dephosphorylated N-terminus.
    Prasannan CB; Tang Q; Fenton AW
    Methods Mol Biol; 2012; 796():335-49. PubMed ID: 22052499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.