BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23713956)

  • 1. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures.
    Hess GT; Guimaraes CP; Spooner E; Ploegh HL; Belcher AM
    ACS Synth Biol; 2013 Sep; 2(9):490-6. PubMed ID: 23713956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins.
    Hess GT; Cragnolini JJ; Popp MW; Allen MA; Dougan SK; Spooner E; Ploegh HL; Belcher AM; Guimaraes CP
    Bioconjug Chem; 2012 Jul; 23(7):1478-87. PubMed ID: 22759232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.
    Ploss M; Kuhn A
    BMC Microbiol; 2011 Sep; 11():211. PubMed ID: 21943062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane assembly of M13 major coat protein: evidence for a structural adaptation in the hinge region and a tilted transmembrane domain.
    Spruijt RB; Wolfs CJ; Hemminga MA
    Biochemistry; 2004 Nov; 43(44):13972-80. PubMed ID: 15518546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny.
    Nagler C; Nagler G; Kuhn A
    J Bacteriol; 2007 Apr; 189(7):2897-905. PubMed ID: 17237167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering M13 for phage display.
    Sidhu SS
    Biomol Eng; 2001 Sep; 18(2):57-63. PubMed ID: 11535417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid preparation of stable isotope labeled peptides that bind to target proteins by a phage library system.
    Mizukoshi Y; Takahashi H; Shimada I
    J Biomol NMR; 2006 Jan; 34(1):23-30. PubMed ID: 16505961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive mutagenesis of the C-terminal domain of the M13 gene-3 minor coat protein: the requirements for assembly into the bacteriophage particle.
    Weiss GA; Roth TA; Baldi PF; Sidhu SS
    J Mol Biol; 2003 Sep; 332(4):777-82. PubMed ID: 12972250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-lipid interactions of bacteriophage M13 gene 9 minor coat protein.
    Houbiers MC; Hemminga MA
    Mol Membr Biol; 2004; 21(6):351-9. PubMed ID: 15764365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein.
    Urban JH; Moosmeier MA; Aumüller T; Thein M; Bosma T; Rink R; Groth K; Zulley M; Siegers K; Tissot K; Moll GN; Prassler J
    Nat Commun; 2017 Nov; 8(1):1500. PubMed ID: 29138389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evolution of artificial M13 coat proteins.
    Weiss GA; Sidhu SS
    J Mol Biol; 2000 Jun; 300(1):213-9. PubMed ID: 10864510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of M13 Bacteriophage Major Coat Protein for Increased Conjugation to Exogenous Compounds.
    Tridgett M; Lloyd JR; Kennefick J; Moore-Kelly C; Dafforn TR
    Bioconjug Chem; 2018 Jun; 29(6):1872-1875. PubMed ID: 29800521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of the M13 major coat protein and its transmembrane peptide segment on a DNA template.
    Li W; Suez I; Szoka FC
    Biochemistry; 2007 Jul; 46(29):8579-91. PubMed ID: 17595059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual genetically encoded phage-displayed ligands.
    Mohan K; Weiss GA
    Anal Biochem; 2014 May; 453():1-3. PubMed ID: 24607794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells.
    DePorter SM; McNaughton BR
    Bioconjug Chem; 2014 Sep; 25(9):1620-5. PubMed ID: 25134017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
    Jin HE; Lee SW
    Methods Mol Biol; 2018; 1776():487-502. PubMed ID: 29869262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable assembly of nanoarchitectures using genetically engineered viruses.
    Huang Y; Chiang CY; Lee SK; Gao Y; Hu EL; De Yoreo J; Belcher AM
    Nano Lett; 2005 Jul; 5(7):1429-34. PubMed ID: 16178252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. M13 bacteriophage coat proteins engineered for improved phage display.
    Sidhu SS; Feld BK; Weiss GA
    Methods Mol Biol; 2007; 352():205-19. PubMed ID: 17041267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient affinity-tagging of M13 phage capsid protein IX for immobilization of protein III-displayed oligopeptide probes on abiotic platforms.
    Tong Z; Silo-Suh LA; Kalalah A; Dawson P; Chin BA; Suh SJ
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):1201-1209. PubMed ID: 31900564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral assembly of oriented quantum dot nanowires.
    Mao C; Flynn CE; Hayhurst A; Sweeney R; Qi J; Georgiou G; Iverson B; Belcher AM
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6946-51. PubMed ID: 12777631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.