These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23714011)

  • 21. The paradox of metabolism in quiescent stem cells.
    Coller HA
    FEBS Lett; 2019 Oct; 593(20):2817-2839. PubMed ID: 31531979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox-regulated fate of neural stem progenitor cells.
    Prozorovski T; Schneider R; Berndt C; Hartung HP; Aktas O
    Biochim Biophys Acta; 2015 Aug; 1850(8):1543-54. PubMed ID: 25662818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIF-1α is upregulated in human mesenchymal stem cells.
    Palomäki S; Pietilä M; Laitinen S; Pesälä J; Sormunen R; Lehenkari P; Koivunen P
    Stem Cells; 2013 Sep; 31(9):1902-9. PubMed ID: 23744828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypoxia and metabolic properties of hematopoietic stem cells.
    Zhang CC; Sadek HA
    Antioxid Redox Signal; 2014 Apr; 20(12):1891-901. PubMed ID: 23621582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Medial HOXA genes demarcate haematopoietic stem cell fate during human development.
    Dou DR; Calvanese V; Sierra MI; Nguyen AT; Minasian A; Saarikoski P; Sasidharan R; Ramirez CM; Zack JA; Crooks GM; Galic Z; Mikkola HK
    Nat Cell Biol; 2016 Jun; 18(6):595-606. PubMed ID: 27183470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and molecular composition of the hepatic progenitor cell niche.
    Vestentoft PS
    Dan Med J; 2013 May; 60(5):B4640. PubMed ID: 23673270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stem cell metabolism in tissue development and aging.
    Shyh-Chang N; Daley GQ; Cantley LC
    Development; 2013 Jun; 140(12):2535-47. PubMed ID: 23715547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.
    Hsu YC; Wu YT; Yu TH; Wei YH
    Semin Cell Dev Biol; 2016 Apr; 52():119-31. PubMed ID: 26868759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypoxia with Wharton's jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34
    Zhao D; Liu L; Chen Q; Wang F; Li Q; Zeng Q; Huang J; Luo M; Li W; Zheng Y; Liu T
    Stem Cell Res Ther; 2018 Jun; 9(1):158. PubMed ID: 29895317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.
    Guntur AR; Gerencser AA; Le PT; DeMambro VE; Bornstein SA; Mookerjee SA; Maridas DE; Clemmons DE; Brand MD; Rosen CJ
    J Bone Miner Res; 2018 Jun; 33(6):1052-1065. PubMed ID: 29342317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis.
    Beckervordersandforth R; Ebert B; Schäffner I; Moss J; Fiebig C; Shin J; Moore DL; Ghosh L; Trinchero MF; Stockburger C; Friedland K; Steib K; von Wittgenstein J; Keiner S; Redecker C; Hölter SM; Xiang W; Wurst W; Jagasia R; Schinder AF; Ming GL; Toni N; Jessberger S; Song H; Lie DC
    Neuron; 2017 Feb; 93(3):560-573.e6. PubMed ID: 28111078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox regulation of stem/progenitor cells and bone marrow niche.
    Urao N; Ushio-Fukai M
    Free Radic Biol Med; 2013 Jan; 54():26-39. PubMed ID: 23085514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate.
    Maryanovich M; Zaltsman Y; Ruggiero A; Goldman A; Shachnai L; Zaidman SL; Porat Z; Golan K; Lapidot T; Gross A
    Nat Commun; 2015 Jul; 6():7901. PubMed ID: 26219591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone marrow-on-a-chip: Long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment.
    Sieber S; Wirth L; Cavak N; Koenigsmark M; Marx U; Lauster R; Rosowski M
    J Tissue Eng Regen Med; 2018 Feb; 12(2):479-489. PubMed ID: 28658717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    Jose C; Bellance N; Rossignol R
    Biochim Biophys Acta; 2011 Jun; 1807(6):552-61. PubMed ID: 20955683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox signaling in cardiac renewal.
    Kimura W; Muralidhar S; Canseco DC; Puente B; Zhang CC; Xiao F; Abderrahman YH; Sadek HA
    Antioxid Redox Signal; 2014 Oct; 21(11):1660-73. PubMed ID: 25000143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions.
    Karigane D; Takubo K
    Int J Hematol; 2017 Jul; 106(1):18-26. PubMed ID: 28540498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model.
    Mostafavi S; Balafkan N; Pettersen IKN; Nido GS; Siller R; Tzoulis C; Sullivan GJ; Bindoff LA
    Front Cell Dev Biol; 2021; 9():744777. PubMed ID: 34722525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondria and pluripotent stem cells function.
    Jia ZW
    Yi Chuan; 2016 Jul; 38(7):603-611. PubMed ID: 27733333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.