These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23714225)
1. Comparison of urea clearance in low-efficiency low-flux vs. high-efficiency high-flux dialyzer membrane with reduced blood and dialysate flow: an in vitro analysis. Munshi R; Ahmad S Hemodial Int; 2014 Jan; 18(1):172-4. PubMed ID: 23714225 [TBL] [Abstract][Full Text] [Related]
2. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study. Azar AT Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865 [TBL] [Abstract][Full Text] [Related]
3. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates. Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120 [TBL] [Abstract][Full Text] [Related]
4. Increases in mass transfer-area coefficients and urea Kt/V with increasing dialysate flow rate are greater for high-flux dialyzers. Leypoldt JK; Cheung AK Am J Kidney Dis; 2001 Sep; 38(3):575-9. PubMed ID: 11532691 [TBL] [Abstract][Full Text] [Related]
5. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances. Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061 [TBL] [Abstract][Full Text] [Related]
6. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis. Lindsay RM; Bene B; Goux N; Heidenheim AP; Landgren C; Sternby J Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690 [TBL] [Abstract][Full Text] [Related]
7. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Ouseph R; Ward RA Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance. Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255 [TBL] [Abstract][Full Text] [Related]
9. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers. Mandolfo S; Malberti F; Imbasciati E; Cogliati P; Gauly A Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344 [TBL] [Abstract][Full Text] [Related]
10. [Factors which influence phosphorus removal in hemodialysis]. Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879 [TBL] [Abstract][Full Text] [Related]
11. Solute clearance in continuous venovenous hemodialysis. A comparison of cuprophane, polyacrylonitrile, and polysulfone membranes. Ifediora OC; Teehan BP; Sigler MH ASAIO J; 1992; 38(3):M697-701. PubMed ID: 1457952 [TBL] [Abstract][Full Text] [Related]
12. A new method to evaluate the local clearance at different annular rings inside hemodialyzers. Huang Z; Klein E; Li B; Poh C; Liao Z; Clark WR; Gao D ASAIO J; 2003; 49(6):692-7. PubMed ID: 14655736 [TBL] [Abstract][Full Text] [Related]
13. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study. Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097 [TBL] [Abstract][Full Text] [Related]
14. [Continuous hemodialysis with low blood flow and low dialysate flow in the treatment of acute renal insufficiency]. Wynckel A; Toupance O; Melin JP; Lavaud S; Wong T; Chanard J Nephrologie; 1990; 11(3):123-7. PubMed ID: 2234266 [TBL] [Abstract][Full Text] [Related]
15. Effects of a reduced inner diameter of hollow fibers in hemodialyzers. Ronco C; Brendolan A; Lupi A; Metry G; Levin NW Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106 [TBL] [Abstract][Full Text] [Related]
16. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique. Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763 [TBL] [Abstract][Full Text] [Related]
17. Technical evaluation of dialysate flow in a newly designed dialyzer. Yamamoto K; Matsukawa H; Yakushiji T; Fukuda M; Hiyoshi T; Sakai K ASAIO J; 2007; 53(1):36-40. PubMed ID: 17237647 [TBL] [Abstract][Full Text] [Related]
18. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Ronco C; Levin N; Brendolan A; Nalesso F; Cruz D; Ocampo C; Kuang D; Bonello M; De Cal M; Corradi V; Ricci Z Hemodial Int; 2006 Oct; 10(4):380-8. PubMed ID: 17014516 [TBL] [Abstract][Full Text] [Related]
19. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate. Sombolos KI; Bamichas GI; Christidou FN; Gionanlis LD; Karagianni AC; Anagnostopoulos TC; Natse TA Artif Organs; 2005 Nov; 29(11):892-8. PubMed ID: 16266303 [TBL] [Abstract][Full Text] [Related]
20. The role of dialyzer membrane flux in bio-incompatibility. Davenport A Hemodial Int; 2008 Oct; 12 Suppl 2():S29-33. PubMed ID: 18837767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]