BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23714426)

  • 1. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution.
    Eames BF; DeLaurier A; Ullmann B; Huycke TR; Nichols JT; Dowd J; McFadden M; Sasaki MM; Kimmel CB
    BMC Dev Biol; 2013 May; 13():23. PubMed ID: 23714426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Craniofacial Development: A Window into Early Patterning.
    Mork L; Crump G
    Curr Top Dev Biol; 2015; 115():235-69. PubMed ID: 26589928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development.
    Schwend T; Ahlgren SC
    BMC Dev Biol; 2009 Nov; 9():59. PubMed ID: 19948063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish.
    Kimmel CB; DeLaurier A; Ullmann B; Dowd J; McFadden M
    PLoS One; 2010 Mar; 5(3):e9475. PubMed ID: 20221441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies.
    Cooper WJ; Wirgau RM; Sweet EM; Albertson RC
    Evol Dev; 2013; 15(6):426-41. PubMed ID: 24261444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FishNet: an online database of zebrafish anatomy.
    Bryson-Richardson RJ; Berger S; Schilling TF; Hall TE; Cole NJ; Gibson AJ; Sharpe J; Currie PD
    BMC Biol; 2007 Aug; 5():34. PubMed ID: 17705855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.
    Isogai S; Horiguchi M; Weinstein BM
    Dev Biol; 2001 Feb; 230(2):278-301. PubMed ID: 11161578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prdm1a is necessary for posterior pharyngeal arch development in zebrafish.
    Birkholz DA; Olesnicky Killian EC; George KM; Artinger KB
    Dev Dyn; 2009 Oct; 238(10):2575-87. PubMed ID: 19777590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods.
    Diogo R; Hinits Y; Hughes SM
    BMC Dev Biol; 2008 Feb; 8():24. PubMed ID: 18307809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability.
    Parsons KJ; Son YH; Crespel A; Thambithurai D; Killen S; Harris MP; Albertson RC
    Proc Biol Sci; 2018 Apr; 285(1877):. PubMed ID: 29669899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dissection of craniofacial development using zebrafish.
    Yelick PC; Schilling TF
    Crit Rev Oral Biol Med; 2002; 13(4):308-22. PubMed ID: 12191958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the Zebrafish Skeleton in Three Dimensions During Juvenile and Adult Development.
    Nguyen SV; Lanni D; Xu Y; Michaelson JS; McMenamin SK
    Front Physiol; 2022; 13():875866. PubMed ID: 35721557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroid hormone shapes craniofacial bones during postembryonic zebrafish development.
    Keer S; Storch JD; Nguyen S; Prado M; Singh R; Hernandez LP; McMenamin SK
    Evol Dev; 2022 Mar; 24(1-2):61-76. PubMed ID: 35334153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbing the developing skull: using laser ablation to investigate the robustness of the infraorbital bones in zebrafish (Danio rerio).
    Chang CT; Franz-Odendaal TA
    BMC Dev Biol; 2014 Dec; 14():44. PubMed ID: 25516292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation and early growth of the skull vault in zebrafish.
    Kanther M; Scalici A; Rashid A; Miao K; Van Deventer E; Fisher S
    Mech Dev; 2019 Dec; 160():103578. PubMed ID: 31644945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative splicing, phylogenetic analysis, and craniofacial expression of zebrafish tbx22.
    Jezewski PA; Fang PK; Payne-Ferreira TL; Yelick PC
    Dev Dyn; 2009 Jun; 238(6):1605-12. PubMed ID: 19418442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements.
    Square T; Jandzik D; Cattell M; Coe A; Doherty J; Medeiros DM
    Dev Biol; 2015 Jan; 397(2):293-304. PubMed ID: 25446275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull.
    Miao KZ; Cozzone A; Caetano-Lopes J; Harris MP; Fisher S
    Front Endocrinol (Lausanne); 2022; 13():969481. PubMed ID: 36387889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fishing for the signals that pattern the face.
    Schilling TF; Le Pabic P
    J Biol; 2009; 8(11):101. PubMed ID: 20067597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.
    Crump JG; Maves L; Lawson ND; Weinstein BM; Kimmel CB
    Development; 2004 Nov; 131(22):5703-16. PubMed ID: 15509770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.