These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23714585)

  • 1. Forest fire spatial pattern analysis in Galicia (NW Spain).
    Fuentes-Santos I; Marey-Pérez MF; González-Manteiga W
    J Environ Manage; 2013 Oct; 128():30-42. PubMed ID: 23714585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-caused wildfire risk rating for prevention planning in Spain.
    Martínez J; Vega-Garcia C; Chuvieco E
    J Environ Manage; 2009 Feb; 90(2):1241-52. PubMed ID: 18723267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the occurrence of wildfires with binary structured additive regression models.
    Ríos-Pena L; Kneib T; Cadarso-Suárez C; Marey-Pérez M
    J Environ Manage; 2017 Feb; 187():154-165. PubMed ID: 27894047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
    Yang J; He HS; Shifley SR
    Ecol Appl; 2008 Jul; 18(5):1212-25. PubMed ID: 18686582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing customized fuel models for shrub and bracken communities in Galicia (NW Spain).
    Vega JA; Álvarez-González JG; Arellano-Pérez S; Fernández C; Cuiñas P; Jiménez E; Fernández-Alonso JM; Fontúrbel T; Alonso-Rego C; Ruiz-González AD
    J Environ Manage; 2024 Feb; 351():119831. PubMed ID: 38134501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating Lightning-Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain.
    Rodríguez-Pérez JR; Ordóñez C; Roca-Pardiñas J; Vecín-Arias D; Castedo-Dorado F
    Risk Anal; 2020 Jul; 40(7):1418-1437. PubMed ID: 32347573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of spatio-temporal hotspots of forest fires in South Asia.
    Reddy CS; Bird NG; Sreelakshmi S; Manikandan TM; Asra M; Krishna PH; Jha CS; Rao PVN; Diwakar PG
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):791. PubMed ID: 31989284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression.
    Rodrigues M; Jiménez-Ruano A; Peña-Angulo D; de la Riva J
    J Environ Manage; 2018 Nov; 225():177-192. PubMed ID: 30081279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.
    Mundo IA; Wiegand T; Kanagaraj R; Kitzberger T
    J Environ Manage; 2013 Jul; 123():77-87. PubMed ID: 23583868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
    Costafreda-Aumedes S; Vega-Garcia C; Comas C
    J Environ Manage; 2018 Jul; 217():90-99. PubMed ID: 29597111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated wildfire risk assessment: framework development and application on the Lewis and Clark National Forest in Montana, USA.
    Thompson MP; Scott J; Helmbrecht D; Calkin DE
    Integr Environ Assess Manag; 2013 Apr; 9(2):329-42. PubMed ID: 22987567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.
    Levin N; Tessler N; Smith A; McAlpine C
    Environ Manage; 2016 Sep; 58(3):549-62. PubMed ID: 27246121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of soil microbial communities to fire and fire-fighting chemicals.
    Barreiro A; Martín A; Carballas T; Díaz-Raviña M
    Sci Total Environ; 2010 Nov; 408(24):6172-8. PubMed ID: 20888616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management.
    Curt T; Borgniet L; Bouillon C
    J Environ Manage; 2013 Mar; 117():150-61. PubMed ID: 23369835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying wildfire models from ecology and statistical physics.
    Zinck RD; Grimm V
    Am Nat; 2009 Nov; 174(5):E170-85. PubMed ID: 19799499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fire ignition patterns to manage prescribed fire behavior: Application to Mediterranean pine forests.
    Molina JR; Ortega M; Rodríguez Y Silva F
    J Environ Manage; 2022 Jan; 302(Pt A):114052. PubMed ID: 34741950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA.
    Ager AA; Buonopane M; Reger A; Finney MA
    Risk Anal; 2013 Jun; 33(6):1000-20. PubMed ID: 23078351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of short-term weather conditions in temporal dynamics of fire regime features in mainland Spain.
    Jiménez-Ruano A; Rodrigues Mimbrero M; Jolly WM; de la Riva Fernández J
    J Environ Manage; 2019 Jul; 241():575-586. PubMed ID: 30301658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula.
    Pereira P; Ubeda X; Martin D; Mataix-Solera J; Guerrero C
    Environ Res; 2011 Feb; 111(2):237-47. PubMed ID: 20869047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.