These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23714786)

  • 1. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries.
    Chen H; Dong W; Ge J; Wang C; Wu X; Lu W; Chen L
    Sci Rep; 2013; 3():1910. PubMed ID: 23714786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.
    Li W; Zhang Q; Zheng G; Seh ZW; Yao H; Cui Y
    Nano Lett; 2013; 13(11):5534-40. PubMed ID: 24127640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.
    Lee HY; Jung Y; Kim S
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2692-5. PubMed ID: 27455691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MnO
    Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the redox behavior of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrodes and application of the DMcT-PEDOT composite cathodes to lithium/lithium ion batteries.
    Kiya Y; Hutchison GR; Henderson JC; Sarukawa T; Hatozaki O; Oyama N; Abruña HD
    Langmuir; 2006 Dec; 22(25):10554-63. PubMed ID: 17129030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
    Jin L; Huang X; Zeng G; Wu H; Morbidelli M
    Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.
    Gomez I; Leonet O; Blazquez JA; Mecerreyes D
    ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-active Fe(CN)(6)(4-)-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries.
    Zhou M; Qian J; Ai X; Yang H
    Adv Mater; 2011 Nov; 23(42):4913-7. PubMed ID: 21972070
    [No Abstract]   [Full Text] [Related]  

  • 18. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage.
    Han J; Dou Y; Zhao J; Wei M; Evans DG; Duan X
    Small; 2013 Jan; 9(1):98-106. PubMed ID: 22961997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.