These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23715015)

  • 1. Quantitative genetic study of the adaptive process.
    Shaw RG; Shaw FH
    Heredity (Edinb); 2014 Jan; 112(1):13-20. PubMed ID: 23715015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant.
    Kulbaba MW; Sheth SN; Pain RE; Eckhart VM; Shaw RG
    Evolution; 2019 Sep; 73(9):1746-1758. PubMed ID: 31432512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Genetic Variance in Fitness, and Inference of Adaptation, When Fitness Follows a Log-Normal Distribution.
    Bonnet T; Morrissey MB; Kruuk LEB
    J Hered; 2019 Jul; 110(4):383-395. PubMed ID: 31242286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variance in fitness and its cross-sex covariance predict adaptation during experimental evolution.
    Koch EL; Sbilordo SH; Guillaume F
    Evolution; 2020 Dec; 74(12):2725-2740. PubMed ID: 33135158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the capacity of Chamaecrista fasciculata for adaptation to change in precipitation.
    Peschel AR; Boehm EL; Shaw RG
    Evolution; 2021 Jan; 75(1):73-85. PubMed ID: 33215695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slower environmental change hinders adaptation from standing genetic variation.
    Guzella TS; Dey S; Chelo IM; Pino-Querido A; Pereira VF; Proulx SR; Teotónio H
    PLoS Genet; 2018 Nov; 14(11):e1007731. PubMed ID: 30383789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction.
    Shaw RG
    Am Nat; 2019 Jan; 193(1):1-10. PubMed ID: 30624100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals.
    Bonnet T; Morrissey MB; de Villemereuil P; Alberts SC; Arcese P; Bailey LD; Boutin S; Brekke P; Brent LJN; Camenisch G; Charmantier A; Clutton-Brock TH; Cockburn A; Coltman DW; Courtiol A; Davidian E; Evans SR; Ewen JG; Festa-Bianchet M; de Franceschi C; Gustafsson L; Höner OP; Houslay TM; Keller LF; Manser M; McAdam AG; McLean E; Nietlisbach P; Osmond HL; Pemberton JM; Postma E; Reid JM; Rutschmann A; Santure AW; Sheldon BC; Slate J; Teplitsky C; Visser ME; Wachter B; Kruuk LEB
    Science; 2022 May; 376(6596):1012-1016. PubMed ID: 35617403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Origin of Additive Genetic Variance Driven by Positive Selection.
    Liu L; Wang Y; Zhang D; Chen Z; Chen X; Su Z; He X
    Mol Biol Evol; 2020 Aug; 37(8):2300-2308. PubMed ID: 32243529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them.
    Osmond MM; Otto SP; Martin G
    Genetics; 2020 Feb; 214(2):493-510. PubMed ID: 31822480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.
    Nunney L
    J Hered; 2016 Jan; 107(1):15-24. PubMed ID: 26563131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction of adaptive evolution: empirical application of the secondary theorem of selection and comparison to the breeder's equation.
    Morrissey MB; Parker DJ; Korsten P; Pemberton JM; Kruuk LE; Wilson AJ
    Evolution; 2012 Aug; 66(8):2399-410. PubMed ID: 22834740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats.
    Verhoeven KJ; Vanhala TK; Biere A; Nevo E; van Damme JM
    Evolution; 2004 Feb; 58(2):270-83. PubMed ID: 15068345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological fitness and the fundamental theorem of natural selection.
    Grafen A
    Am Nat; 2015 Jul; 186(1):1-14. PubMed ID: 26098334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limiting fitness distributions in evolutionary dynamics.
    Smerlak M; Youssef A
    J Theor Biol; 2017 Mar; 416():68-80. PubMed ID: 28069447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of additive genetic variance for fitness in a population of partridge pea in two field sites.
    Sheth SN; Kulbaba MW; Pain RE; Shaw RG
    Evolution; 2018 Nov; 72(11):2537-2545. PubMed ID: 30267420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic mutations can both help and hinder adaptive evolution.
    Kronholm I; Collins S
    Mol Ecol; 2016 Apr; 25(8):1856-68. PubMed ID: 26139359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fisher's geometrical model of fitness landscape and variance in fitness within a changing environment.
    Zhang XS
    Evolution; 2012 Aug; 66(8):2350-68. PubMed ID: 22834737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.
    Roux F; Bergelson J
    Curr Top Dev Biol; 2016; 119():111-56. PubMed ID: 27282025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes.
    Bernatchez L
    J Fish Biol; 2016 Dec; 89(6):2519-2556. PubMed ID: 27687146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.