BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23715059)

  • 1. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism.
    Lowe MT; Kim EH; Faull RL; Christie DL; Waldvogel HJ
    J Cereb Blood Flow Metab; 2013 Aug; 33(8):1295-306. PubMed ID: 23715059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of creatine kinase isoenzymes in human placenta during early, mid-, and late gestation.
    Thomure MF; Gast MJ; Srivastava N; Payne RM
    J Soc Gynecol Investig; 1996; 3(6):322-7. PubMed ID: 8923416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: evidence for a nuclear energy shuttle.
    Chen L; Roberts R; Friedman DL
    J Comp Neurol; 1995 Dec; 363(3):389-401. PubMed ID: 8847407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.
    Friedman DL; Roberts R
    J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta.
    Payne RM; Friedman DL; Grant JW; Perryman MB; Strauss AW
    Am J Physiol; 1993 Oct; 265(4 Pt 1):E624-35. PubMed ID: 8238338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.
    Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M
    Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.
    Baldissera MD; Souza CF; Júnior GB; Verdi CM; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Vizzotto BS; Baldisserotto B
    Microb Pathog; 2017 Sep; 110():439-443. PubMed ID: 28735082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental expression of sarcomeric and ubiquitous mitochondrial creatine kinase is tissue-specific.
    Payne RM; Strauss AW
    Biochim Biophys Acta; 1994 Sep; 1219(1):33-8. PubMed ID: 8086475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit.
    Streijger F; Oerlemans F; Ellenbroek BA; Jost CR; Wieringa B; Van der Zee CE
    Behav Brain Res; 2005 Feb; 157(2):219-34. PubMed ID: 15639173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: changing patterns in development and with increased activity.
    Boero J; Qin W; Cheng J; Woolsey TA; Strauss AW; Khuchua Z
    Mol Cell Biochem; 2003 Feb; 244(1-2):69-76. PubMed ID: 12701812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional maturation of creatine kinase in rat brain.
    Holtzman D; Tsuji M; Wallimann T; Hemmer W
    Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and subcellular compartmentation of creatine kinase in brain.
    Manos P; Bryan GK
    Dev Neurosci; 1993; 15(3-5):271-9. PubMed ID: 7805579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the mitochondrial creatine kinase genes.
    Payne RM; Strauss AW
    Mol Cell Biochem; 1994; 133-134():235-43. PubMed ID: 7808456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional aspects of creatine kinase in brain.
    Hemmer W; Wallimann T
    Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.