BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23715060)

  • 1. Signal transduction in cerebral arteries after subarachnoid hemorrhage-a phosphoproteomic approach.
    Parker BL; Larsen MR; Edvinsson LI; Povlsen GK
    J Cereb Blood Flow Metab; 2013 Aug; 33(8):1259-69. PubMed ID: 23715060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway.
    Maddahi A; Povlsen GK; Edvinsson L
    J Neuroinflammation; 2012 Dec; 9():274. PubMed ID: 23259581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic Expression Changes in Large Cerebral Arteries After Experimental Subarachnoid Hemorrhage in Rat Are Regulated by the MEK-ERK1/2 Pathway.
    Müller AH; Edwards AVG; Larsen MR; Nielsen J; Warfvinge K; Povlsen GK; Edvinsson L
    J Mol Neurosci; 2017 Aug; 62(3-4):380-394. PubMed ID: 28741142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model.
    Maddahi A; Ansar S; Chen Q; Edvinsson L
    J Cereb Blood Flow Metab; 2011 Jan; 31(1):144-54. PubMed ID: 20424636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage.
    Povlsen GK; Johansson SE; Larsen CC; Samraj AK; Edvinsson L
    BMC Neurosci; 2013 Mar; 14():34. PubMed ID: 23496889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat.
    Beg SA; Hansen-Schwartz JA; Vikman PJ; Xu CB; Edvinsson LI
    J Cereb Blood Flow Metab; 2006 Jun; 26(6):846-56. PubMed ID: 16251886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage.
    Ansar S; Maddahi A; Edvinsson L
    BMC Neurosci; 2011 Oct; 12():107. PubMed ID: 22032648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function.
    Edvinsson L; Povlsen GK; Ahnstedt H; Waldsee R
    J Neuroinflammation; 2014 Dec; 11():207. PubMed ID: 25498987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats.
    Larsen CC; Povlsen GK; Rasmussen MN; Edvinsson L
    J Neurosurg; 2011 Apr; 114(4):1143-53. PubMed ID: 20597604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries.
    Vikman P; Ansar S; Henriksson M; Stenman E; Edvinsson L
    Exp Brain Res; 2007 Dec; 183(4):499-510. PubMed ID: 17828393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation.
    Vikman P; Ansar S; Edvinsson L
    J Neurosurg; 2007 Nov; 107(5):1015-22. PubMed ID: 17977275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage.
    Ansar S; Edvinsson L
    Stroke; 2008 Jan; 39(1):185-90. PubMed ID: 18032736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling pathways for early brain injury after subarachnoid hemorrhage.
    Kusaka G; Ishikawa M; Nanda A; Granger DN; Zhang JH
    J Cereb Blood Flow Metab; 2004 Aug; 24(8):916-25. PubMed ID: 15362722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat.
    Zhou K; Enkhjargal B; Xie Z; Sun C; Wu L; Malaguit J; Chen S; Tang J; Zhang J; Zhang JH
    Stroke; 2018 Jan; 49(1):175-183. PubMed ID: 29273596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEK1/2 inhibitor U0126 but not endothelin receptor antagonist clazosentan reduces upregulation of cerebrovascular contractile receptors and delayed cerebral ischemia, and improves outcome after subarachnoid hemorrhage in rats.
    Povlsen GK; Edvinsson L
    J Cereb Blood Flow Metab; 2015 Feb; 35(2):329-37. PubMed ID: 25407271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the JAK-STAT signaling pathway in the rat basilar artery after subarachnoid hemorrhage.
    Osuka K; Watanabe Y; Yamauchi K; Nakazawa A; Usuda N; Tokuda M; Yoshida J
    Brain Res; 2006 Feb; 1072(1):1-7. PubMed ID: 16413512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock protein expression in cerebral vessels after subarachnoid hemorrhage.
    Macomson SD; Brophy CM; Miller W; Harris VA; Shaver EG
    Neurosurgery; 2002 Jul; 51(1):204-10; discussion 210-1. PubMed ID: 12182419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3.
    Nishikawa H; Liu L; Nakano F; Kawakita F; Kanamaru H; Nakatsuka Y; Okada T; Suzuki H
    Stroke; 2018 Nov; 49(11):2743-2751. PubMed ID: 30355205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice.
    Fujimoto M; Shiba M; Kawakita F; Liu L; Shimojo N; Imanaka-Yoshida K; Yoshida T; Suzuki H
    J Neurosurg; 2016 Jun; 124(6):1693-702. PubMed ID: 26473781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subarachnoid haemorrhage: what happens to the cerebral arteries?
    Sobey CG; Faraci FM
    Clin Exp Pharmacol Physiol; 1998 Nov; 25(11):867-76. PubMed ID: 9807657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.