These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23715116)

  • 1. Molecular dynamics studies of material property effects on thermal boundary conductance.
    Zhou XW; Jones RE; Duda JC; Hopkins PE
    Phys Chem Chem Phys; 2013 Jul; 15(26):11078-87. PubMed ID: 23715116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance.
    Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE
    Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal boundary conductance and thermal rectification in molecules.
    Leitner DM
    J Phys Chem B; 2013 Oct; 117(42):12820-8. PubMed ID: 23701185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental observation of localized interfacial phonon modes.
    Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S
    Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces.
    Lee E; Luo T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18407-18415. PubMed ID: 28678278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.
    Hannah DC; Gezelter JD; Schaller RD; Schatz GC
    ACS Nano; 2015 Jun; 9(6):6278-87. PubMed ID: 26020654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining the Effects of Stiffness and Mass Difference on the Thermal Interface Conductance Between Lennard-Jones Solids.
    Gordiz K; Henry A
    Sci Rep; 2015 Dec; 5():18361. PubMed ID: 26678793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics.
    Zhou XW; Jones RE; Hopkins PE; Beechem TE
    Phys Chem Chem Phys; 2014 May; 16(20):9403-10. PubMed ID: 24722642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers.
    Li R; Hussain K; Liao ME; Huynh K; Hoque MSB; Wyant S; Koh YR; Xu Z; Wang Y; Luccioni DP; Cheng Z; Shi J; Lee E; Graham S; Henry A; Hopkins PE; Goorsky MS; Khan MA; Luo T
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8109-8118. PubMed ID: 38315970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermal transport across a bi-crystalline graphene-polymer interface: an atomistic approach.
    Verma A; Kumar R; Parashar A
    Phys Chem Chem Phys; 2019 Mar; 21(11):6229-6237. PubMed ID: 30834401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal-melt interface stresses: atomistic simulation calculations for a Lennard-Jones binary alloy, Stillinger-Weber Si, and embedded atom method Ni.
    Becker CA; Hoyt JJ; Buta D; Asta M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061610. PubMed ID: 17677276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers.
    Oommen SM; Fallarino L; Heinze J; Hellwig O; Pisana S
    J Phys Condens Matter; 2022 Sep; 34(46):. PubMed ID: 36108621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.