These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 23715125)
1. Determinants of phosphorus mobilization during hemodialysis. Leypoldt JK; Agar BU; Akonur A; Hutchcraft AM; Story KO; Culleton BF Kidney Int; 2013 Oct; 84(4):841-8. PubMed ID: 23715125 [TBL] [Abstract][Full Text] [Related]
2. Potassium kinetics during hemodialysis. Agar BU; Culleton BF; Fluck R; Leypoldt JK Hemodial Int; 2015 Jan; 19(1):23-32. PubMed ID: 25091596 [TBL] [Abstract][Full Text] [Related]
3. A two-pool kinetic model predicts phosphate concentrations during and shortly following a conventional (three times weekly) hemodialysis session. Daugirdas JT Nephrol Dial Transplant; 2018 Jan; 33(1):76-84. PubMed ID: 27738228 [TBL] [Abstract][Full Text] [Related]
4. A Pseudo-One Compartment Model of Phosphorus Kinetics During Hemodialysis: Further Supporting Evidence. Leypoldt JK; Agar BU; Cheung AK; Bernardo AA Artif Organs; 2017 Nov; 41(11):1043-1048. PubMed ID: 29148130 [TBL] [Abstract][Full Text] [Related]
5. Phosphate Kinetics During Weekly Cycle of Hemodialysis Sessions: Application of Mathematical Modeling. Debowska M; Poleszczuk J; Wojcik-Zaluska A; Ksiazek A; Zaluska W Artif Organs; 2015 Dec; 39(12):1005-14. PubMed ID: 25994493 [TBL] [Abstract][Full Text] [Related]
6. Predialysis and Postdialysis pH and Bicarbonate and Risk of All-Cause and Cardiovascular Mortality in Long-term Hemodialysis Patients. Yamamoto T; Shoji S; Yamakawa T; Wada A; Suzuki K; Iseki K; Tsubakihara Y Am J Kidney Dis; 2015 Sep; 66(3):469-78. PubMed ID: 26015276 [TBL] [Abstract][Full Text] [Related]
7. Phosphorus kinetics during hemodiafiltration: analysis using a pseudo-one-compartment model. Leypoldt JK; Agar BU; Akonur A; Culleton BF Blood Purif; 2013; 35 Suppl 1():59-63. PubMed ID: 23466381 [TBL] [Abstract][Full Text] [Related]
8. Removal and rebound kinetics of cystatin C in high-flux hemodialysis and hemodiafiltration. Vilar E; Boltiador C; Viljoen A; Machado A; Farrington K Clin J Am Soc Nephrol; 2014 Jul; 9(7):1240-7. PubMed ID: 24789553 [TBL] [Abstract][Full Text] [Related]
9. Single compartment models for evaluating beta 2-microglobulin clearance during hemodialysis. Leypoldt JK; Cheung AK; Deeter RB ASAIO J; 1997; 43(6):904-9. PubMed ID: 9386841 [TBL] [Abstract][Full Text] [Related]
10. Kinetic model of phosphorus mobilization during and after short and conventional hemodialysis. Agar BU; Akonur A; Lo YC; Cheung AK; Leypoldt JK Clin J Am Soc Nephrol; 2011 Dec; 6(12):2854-60. PubMed ID: 22034502 [TBL] [Abstract][Full Text] [Related]
11. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model. Leypoldt JK; Agar BU; Akonur A; Gellens ME; Culleton BF Int J Artif Organs; 2012 Nov; 35(11):969-80. PubMed ID: 23065870 [TBL] [Abstract][Full Text] [Related]
12. Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: results from the HEMO Study. Daugirdas JT; Greene T; Depner TA; Leypoldt J; Gotch F; Schulman G; Star R; J Am Soc Nephrol; 2004 Jan; 15(1):194-203. PubMed ID: 14694173 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration. Leypoldt JK Semin Dial; 2005; 18(5):401-8. PubMed ID: 16191181 [TBL] [Abstract][Full Text] [Related]
14. Physiologic volume of phosphorus during hemodialysis: predictions from a pseudo one-compartment model. Leypoldt JK; Akonur A; Agar BU; Culleton BF Hemodial Int; 2012 Oct; 16 Suppl 1():S15-9. PubMed ID: 23036030 [TBL] [Abstract][Full Text] [Related]
15. Creatinine generation from kinetic modeling with or without postdialysis serum creatinine measurement: results from the HEMO study. Daugirdas JT; Depner TA Nephrol Dial Transplant; 2017 Nov; 32(11):1926-1933. PubMed ID: 28379486 [TBL] [Abstract][Full Text] [Related]
16. Patient-specific phosphorus mobilization clearance during nocturnal and short daily hemodialysis. Agar BU; Troidle L; Finkelstein FO; Kohn OF; Akonur A; Leypoldt JK Hemodial Int; 2012 Oct; 16(4):491-6. PubMed ID: 22574966 [TBL] [Abstract][Full Text] [Related]
17. A simple method to estimate phosphorus mobilization in hemodialysis using only predialytic and postdialytic blood samples. Agar BU; Akonur A; Cheung AK; Leypoldt JK Hemodial Int; 2011 Oct; 15 Suppl 1():S9-S14. PubMed ID: 22093606 [TBL] [Abstract][Full Text] [Related]
18. Enhanced solute removal with intermittent, in-center, 8-hour nocturnal hemodialysis. Troidle L; Finkelstein F; Hotchkiss M; Leypoldt JK Hemodial Int; 2009 Oct; 13(4):487-91. PubMed ID: 19840141 [TBL] [Abstract][Full Text] [Related]
19. Simplified phosphorus kinetic modeling: predicting changes in predialysis serum phosphorus concentration after altering the hemodialysis prescription. Leypoldt JK; Agar BU; Culleton BF Nephrol Dial Transplant; 2014 Jul; 29(7):1423-9. PubMed ID: 24569497 [TBL] [Abstract][Full Text] [Related]
20. Lowering postdialysis plasma sodium (conductivity) to increase sodium removal in volume-expanded hemodialysis patients: a pilot study using a biofeedback software system. Manlucu J; Gallo K; Heidenheim PA; Lindsay RM Am J Kidney Dis; 2010 Jul; 56(1):69-76. PubMed ID: 20303632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]