BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23715408)

  • 1. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A.
    Ragavan KV; Selvakumar LS; Thakur MS
    Chem Commun (Camb); 2013 Jul; 49(53):5960-2. PubMed ID: 23715408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum.
    Zhu Y; Zhou C; Yan X; Yan Y; Wang Q
    Anal Chim Acta; 2015 Jul; 883():81-9. PubMed ID: 26088780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles.
    Zhang D; Yang J; Ye J; Xu L; Xu H; Zhan S; Xia B; Wang L
    Anal Biochem; 2016 Apr; 499():51-56. PubMed ID: 26820097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.
    Ma Y; Liu J; Li H
    Biosens Bioelectron; 2017 Jun; 92():21-25. PubMed ID: 28182974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel aptasensing method for detecting bisphenol A using the catalytic effect of the Fe
    Farahbakhsh F; Heydari-Bafrooei E; Ahmadi M; Hoda Hekmatara S; Sabet M
    Food Chem; 2021 Sep; 355():129666. PubMed ID: 33799256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants.
    Li D; Li C; Wang H; Li J; Zhao Y; Jiang X; Wen G; Liang A; Jiang Z
    Mikrochim Acta; 2021 Apr; 188(5):175. PubMed ID: 33893886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor.
    Mei Z; Chu H; Chen W; Xue F; Liu J; Xu H; Zhang R; Zheng L
    Biosens Bioelectron; 2013 Jan; 39(1):26-30. PubMed ID: 22794930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform.
    Beiranvand ZS; Abbasi AR; Dehdashtian S; Karimi Z; Azadbakht A
    Anal Biochem; 2017 Feb; 518():35-45. PubMed ID: 27789234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor.
    Jia M; Sha J; Li Z; Wang W; Zhang H
    Food Chem; 2020 Jul; 317():126459. PubMed ID: 32113141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers.
    Zheng Z; Du Y; Wang Z; Feng Q; Wang C
    Analyst; 2013 Jan; 138(2):693-701. PubMed ID: 23187892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic separate "turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene.
    Hu LY; Niu CG; Wang XY; Huang DW; Zhang L; Zeng GM
    Talanta; 2017 Jun; 168():196-202. PubMed ID: 28391842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance light scattering determination of trace bisphenol A with signal amplification by aptamer-nanogold catalysis.
    Yao D; Liang A; Yin W; Jiang Z
    Luminescence; 2014 Aug; 29(5):516-21. PubMed ID: 24123862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance biosensor for the ultrasensitive detection of bisphenol A.
    Xue CS; Erika G; Jiří H
    Anal Bioanal Chem; 2019 Sep; 411(22):5655-5658. PubMed ID: 31254055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils.
    Qiao Y; Li J; Li H; Fang H; Fan D; Wang W
    Biosens Bioelectron; 2016 Dec; 86():315-320. PubMed ID: 27387262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A.
    Ye S; Ye R; Shi Y; Qiu B; Guo L; Huang D; Lin Z; Chen G
    Anal Bioanal Chem; 2017 Dec; 409(30):7145-7151. PubMed ID: 29067479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A.
    Kuang H; Yin H; Liu L; Xu L; Ma W; Xu C
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):364-9. PubMed ID: 24251810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A.
    Chung E; Jeon J; Yu J; Lee C; Choo J
    Biosens Bioelectron; 2015 Feb; 64():560-5. PubMed ID: 25310489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A.
    Zhu Y; Cai Y; Xu L; Zheng L; Wang L; Qi B; Xu C
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7492-6. PubMed ID: 25799081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bisphenol A is not detectable in media or selected contact materials used in IVF.
    Mahalingaiah S; Hauser R; Patterson DG; Woudneh M; Racowsky C
    Reprod Biomed Online; 2012 Dec; 25(6):608-11. PubMed ID: 23063817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection.
    Sharma TK; Ramanathan R; Weerathunge P; Mohammadtaheri M; Daima HK; Shukla R; Bansal V
    Chem Commun (Camb); 2014 Dec; 50(100):15856-9. PubMed ID: 25331713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.