These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23715690)

  • 1. Uniquely localized intra-molecular amino acid concentrations at the glycolytic enzyme catalytic/active centers of Archaea, Bacteria and Eukaryota are associated with their proposed temporal appearances on earth.
    Pollack JD; Gerard D; Pearl DK
    Orig Life Evol Biosph; 2013 Apr; 43(2):161-87. PubMed ID: 23715690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration of specific amino acids at the catalytic/active centers of highly-conserved "housekeeping" enzymes of central metabolism in archaea, bacteria and Eukaryota: is there a widely conserved chemical signal of prebiotic assembly?
    Pollack JD; Pan X; Pearl DK
    Orig Life Evol Biosph; 2010 Jun; 40(3):273-302. PubMed ID: 20069373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation and structural localizations suggest a physical trace of metabolism's progressive geochronological emergence.
    Pollack JD; Gerard D; Makhatadze GI; Pearl DK
    J Biomol Struct Dyn; 2020 Aug; 38(12):3700-3719. PubMed ID: 31608807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary Relationships and Taxa-Specific Conserved Signature Indels Among Cellulases of Archaea, Bacteria, and Eukarya.
    Thomas L; Ram H; Singh VP
    J Comput Biol; 2017 Oct; 24(10):1029-1042. PubMed ID: 28177649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of acetyl-CoA synthase.
    Lindahl PA; Chang B
    Orig Life Evol Biosph; 2001; 31(4-5):403-34. PubMed ID: 11599178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea.
    Kazlauskas D; Sezonov G; Charpin N; Venclovas Č; Forterre P; Krupovic M
    J Mol Biol; 2018 Mar; 430(5):737-750. PubMed ID: 29198957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.
    Yan S; Wu G
    World J Microbiol Biotechnol; 2016 Feb; 32(2):24. PubMed ID: 26745984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.
    Ronimus RS; Morgan HW
    Archaea; 2003 Oct; 1(3):199-221. PubMed ID: 15803666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation.
    Fouqueau T; Blombach F; Werner F
    Annu Rev Microbiol; 2017 Sep; 71():331-348. PubMed ID: 28657884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural conservation of the PIN domain active site across all domains of life.
    Senissar M; Manav MC; Brodersen DE
    Protein Sci; 2017 Aug; 26(8):1474-1492. PubMed ID: 28508407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.
    Jack BR; Meyer AG; Echave J; Wilke CO
    PLoS Biol; 2016 May; 14(5):e1002452. PubMed ID: 27138088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes.
    Grosjean H; de Crécy-Lagard V; Marck C
    FEBS Lett; 2010 Jan; 584(2):252-64. PubMed ID: 19931533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of enzyme structure-function combination across three domains of life.
    Zhang Z; Tang YR
    Protein Pept Lett; 2007; 14(3):291-7. PubMed ID: 17346235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin and radiation of the phosphoprotein phosphatase (PPP) enzymes of Eukaryotes.
    Kerk D; Mattice JF; Valdés-Tresanco ME; Noskov SY; Ng KK; Moorhead GB
    Sci Rep; 2021 Jul; 11(1):13681. PubMed ID: 34211082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life.
    Lombard J; Moreira D
    Mol Biol Evol; 2011 Jan; 28(1):87-99. PubMed ID: 20651049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo.
    Tang Y; Tirrell DA
    Biochemistry; 2002 Aug; 41(34):10635-45. PubMed ID: 12186549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evolution of dihydrouridine synthases.
    Kasprzak JM; Czerwoniec A; Bujnicki JM
    BMC Bioinformatics; 2012 Jun; 13():153. PubMed ID: 22741570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.