These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23715854)

  • 1. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.
    Zhang Y; Yu X; Gong S; Ye C; Fan Z; Lin H
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1309-20. PubMed ID: 23715854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.
    Yoshida K; Tashiro Y; May T; Okabe S
    Water Res; 2015 Jun; 76():33-42. PubMed ID: 25776918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes.
    Semião AJ; Habimana O; Cao H; Heffernan R; Safari A; Casey E
    Water Res; 2013 May; 47(8):2909-20. PubMed ID: 23541307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process.
    Mun S; Baek Y; Kim C; Lee YW; Yoon J
    Biofouling; 2012; 28(6):627-33. PubMed ID: 22726211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces.
    Ponnusamy K; Kappachery S; Thekeettle M; Song JH; Kweon JH
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1695-703. PubMed ID: 23539151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.
    Bereschenko LA; Prummel H; Euverink GJ; Stams AJ; van Loosdrecht MC
    Water Res; 2011 Jan; 45(2):405-16. PubMed ID: 21111441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.
    Akhondi E; Wu B; Sun S; Marxer B; Lim W; Gu J; Liu L; Burkhardt M; McDougald D; Pronk W; Fane AG
    Water Res; 2015 Mar; 70():158-73. PubMed ID: 25528546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biofilm formation on membrane performance in submerged membrane bioreactors.
    Mafirad S; Mehrnia MR; Azami H; Sarrafzadeh MH
    Biofouling; 2011 May; 27(5):477-85. PubMed ID: 21604217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors.
    Luo J; Zhang J; Tan X; McDougald D; Zhuang G; Fane AG; Kjelleberg S; Cohen Y; Rice SA
    Biofouling; 2014 Oct; 30(9):1093-110. PubMed ID: 25367774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of antiscalants on biofouling of RO membranes in seawater desalination.
    Sweity A; Oren Y; Ronen Z; Herzberg M
    Water Res; 2013 Jun; 47(10):3389-98. PubMed ID: 23615335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
    Ronen A; Semiat R; Dosoretz CG
    Water Res; 2013 Nov; 47(17):6628-38. PubMed ID: 24079967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do biological-based strategies hold promise to biofouling control in MBRs?
    Malaeb L; Le-Clech P; Vrouwenvelder JS; Ayoub GM; Saikaly PE
    Water Res; 2013 Oct; 47(15):5447-63. PubMed ID: 23863390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies.
    Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK
    Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation.
    Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M
    Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of membrane biofouling by d-amino acids: Effect of bacterial cell-wall property and d-amino acid type.
    Wang SY; Sun XF; Gao WJ; Wang YF; Jiang BB; Afzal MZ; Song C; Wang SG
    Colloids Surf B Biointerfaces; 2018 Apr; 164():20-26. PubMed ID: 29367053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching.
    Kim JH; Choi DC; Yeon KM; Kim SR; Lee CH
    Environ Sci Technol; 2011 Feb; 45(4):1601-7. PubMed ID: 21204565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning of biologically fouled membranes with self-collapsing microbubbles.
    Agarwal A; Ng WJ; Liu Y
    Biofouling; 2013; 29(1):69-76. PubMed ID: 23194437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms.
    Dusane DH; Nancharaiah YV; Zinjarde SS; Venugopalan VP
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):242-8. PubMed ID: 20688490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.