BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23715978)

  • 21. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.
    Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN
    BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE; Mjolsness E; Wold BJ
    PLoS Comput Biol; 2006 Dec; 2(12):e169. PubMed ID: 17194216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mcm1p binding sites in the ARG1 promoter positively regulate ARG1 transcription and S. cerevisiae growth in the absence of arginine and Gcn4p.
    Hong S; Yoon S
    Amino Acids; 2011 Feb; 40(2):623-31. PubMed ID: 20625780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robustness analysis of cellular systems using the genetic tug-of-war method.
    Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y
    Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of the context-dependence of regulatory networks.
    Papp B; Oliver S
    Genome Biol; 2005; 6(2):206. PubMed ID: 15693953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.
    Liu H
    Bioprocess Biosyst Eng; 2010 May; 33(4):495-505. PubMed ID: 19657679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis.
    Ignatius Pang CN; Goel A; Wilkins MR
    J Proteome Res; 2018 Mar; 17(3):1014-1030. PubMed ID: 29392949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.
    Hirose O; Yoshida R; Imoto S; Yamaguchi R; Higuchi T; Charnock-Jones DS; Print C; Miyano S
    Bioinformatics; 2008 Apr; 24(7):932-42. PubMed ID: 18292116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene set coregulated by the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway.
    Taylor R; Kebaara BW; Nazarenus T; Jones A; Yamanaka R; Uhrenholdt R; Wendler JP; Atkin AL
    Eukaryot Cell; 2005 Dec; 4(12):2066-77. PubMed ID: 16339724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of functional modules using network topology and high-throughput data.
    Ulitsky I; Shamir R
    BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic properties influencing the evolvability of gene expression.
    Landry CR; Lemos B; Rifkin SA; Dickinson WJ; Hartl DL
    Science; 2007 Jul; 317(5834):118-21. PubMed ID: 17525304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Yap family and its role in stress response.
    Rodrigues-Pousada C; Menezes RA; Pimentel C
    Yeast; 2010 May; 27(5):245-58. PubMed ID: 20148391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering of GAL1 promoter-driven expression system with artificial transcription factors.
    Park KS; Kim JS
    Biochem Biophys Res Commun; 2006 Dec; 351(2):412-7. PubMed ID: 17069762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An incoherent feedforward loop facilitates adaptive tuning of gene expression.
    Hong J; Brandt N; Abdul-Rahman F; Yang A; Hughes T; Gresham D
    Elife; 2018 Apr; 7():. PubMed ID: 29620523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.