These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23716228)
1. No evidence for ITD-specific adaptation in the frequency following response. Gockel HE; Muhammed L; Farooq R; Plack CJ; Carlyon RP Adv Exp Med Biol; 2013; 787():231-8. PubMed ID: 23716228 [TBL] [Abstract][Full Text] [Related]
2. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators. Tichko P; Skoe E Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699 [TBL] [Abstract][Full Text] [Related]
3. The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. Gockel HE; Carlyon RP; Mehta A; Plack CJ J Assoc Res Otolaryngol; 2011 Dec; 12(6):767-82. PubMed ID: 21826534 [TBL] [Abstract][Full Text] [Related]
4. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. Batra R; Kuwada S; Stanford TR J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589 [TBL] [Abstract][Full Text] [Related]
5. Neural sensitivity to interaural envelope delays in the inferior colliculus of the guinea pig. Griffin SJ; Bernstein LR; Ingham NJ; McAlpine D J Neurophysiol; 2005 Jun; 93(6):3463-78. PubMed ID: 15703234 [TBL] [Abstract][Full Text] [Related]
6. Response properties of neurons in the core of the central nucleus of the inferior colliculus of the barn owl. Wagner H; Mazer JA; von Campenhausen M Eur J Neurosci; 2002 Apr; 15(8):1343-52. PubMed ID: 11994128 [TBL] [Abstract][Full Text] [Related]
7. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. Joris PX J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590 [TBL] [Abstract][Full Text] [Related]
8. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation. Gockel HE; Krugliak A; Plack CJ; Carlyon RP J Assoc Res Otolaryngol; 2015 Dec; 16(6):747-62. PubMed ID: 26162415 [TBL] [Abstract][Full Text] [Related]
9. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris. Palanca-Castan N; Köppl C Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616 [TBL] [Abstract][Full Text] [Related]
10. Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones. Greenberg S; Marsh JT; Brown WS; Smith JC Hear Res; 1987; 25(2-3):91-114. PubMed ID: 3558136 [TBL] [Abstract][Full Text] [Related]
11. Independent or integrated processing of interaural time and level differences in human auditory cortex? Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274 [TBL] [Abstract][Full Text] [Related]
12. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway. Vonderschen K; Wagner H J Neurosci; 2012 Apr; 32(17):5911-23. PubMed ID: 22539852 [TBL] [Abstract][Full Text] [Related]
13. Tuning to interaural time differences across frequency. Fitzpatrick DC; Kuwada S J Neurosci; 2001 Jul; 21(13):4844-51. PubMed ID: 11425911 [TBL] [Abstract][Full Text] [Related]
14. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Joris PX; Yin TC J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754 [TBL] [Abstract][Full Text] [Related]
15. Neural encoding in the human brainstem relevant to the pitch of complex tones. Krishnan A; Plack CJ Hear Res; 2011 May; 275(1-2):110-9. PubMed ID: 21167923 [TBL] [Abstract][Full Text] [Related]
16. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat. Lohuis TD; Fuzessery ZM Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183 [TBL] [Abstract][Full Text] [Related]
17. Aging degrades the neural encoding of simple and complex sounds in the human brainstem. Clinard CG; Tremblay KL J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946 [TBL] [Abstract][Full Text] [Related]
18. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. Vollmer M J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238 [TBL] [Abstract][Full Text] [Related]
19. Human frequency following responses to iterated rippled noise with positive and negative gain: Differential sensitivity to waveform envelope and temporal fine-structure. Ananthakrishnan S; Krishnan A Hear Res; 2018 Sep; 367():113-123. PubMed ID: 30096491 [TBL] [Abstract][Full Text] [Related]
20. Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Krishnan A; Bidelman GM; Gandour JT Hear Res; 2010 Sep; 268(1-2):60-6. PubMed ID: 20457239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]