BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23716242)

  • 1. Relationships between auditory nerve activity and temporal pitch perception in cochlear implant users.
    Carlyon RP; Deeks JM
    Adv Exp Med Biol; 2013; 787():363-71. PubMed ID: 23716242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined neural and behavioural measures of temporal pitch perception in cochlear implant users.
    Carlyon RP; Deeks JM
    J Acoust Soc Am; 2015 Nov; 138(5):2885-905. PubMed ID: 26627764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and physiological correlates of temporal pitch perception in electric and acoustic hearing.
    Carlyon RP; Mahendran S; Deeks JM; Long CJ; Axon P; Baguley D; Bleeck S; Winter IM
    J Acoust Soc Am; 2008 Feb; 123(2):973-85. PubMed ID: 18247900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates.
    Haenggeli A; Zhang JS; Vischer MW; Pelizzone M; Rouiller EM
    Audiology; 1998; 37(6):353-71. PubMed ID: 9888192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML; Laurello SA
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse-rate discrimination deficit in cochlear implant users: is the upper limit of pitch peripheral or central?
    Zhou N; Mathews J; Dong L
    Hear Res; 2019 Jan; 371():1-10. PubMed ID: 30423498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate pitch discrimination in cochlear implant users with the use of double pulses and different interpulse intervals.
    Pieper SH; Bahmer A
    Cochlear Implants Int; 2019 Nov; 20(6):312-323. PubMed ID: 31448701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relationship Between Cochlear Implant Speech Perception Outcomes and Electrophysiological Measures of the Electrically Evoked Compound Action Potential.
    Skidmore J; Oleson JJ; Yuan Y; He S
    Ear Hear; 2023 Nov-Dec 01; 44(6):1485-1497. PubMed ID: 37194125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Better temporal neural coding with cochlear implants in awake animals.
    Chung Y; Hancock KE; Nam SI; Delgutte B
    Adv Exp Med Biol; 2013; 787():353-61. PubMed ID: 23716241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the Adaptation Recovery Function of the Auditory Nerve and Its Association With Advanced Age in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Skidmore J; Carter BL
    Ear Hear; 2022 Sep-Oct 01; 43(5):1472-1486. PubMed ID: 35139051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users.
    Green T; Faulkner A; Rosen S
    Ear Hear; 2012; 33(2):221-30. PubMed ID: 22367093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.
    Hughes ML; Baudhuin JL; Goehring JL
    Hear Res; 2014 Oct; 316():44-56. PubMed ID: 25093283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Sensitivity of the Electrically Stimulated Auditory Nerve to Amplitude Modulation Cues Declines With Advanced Age.
    Riggs WJ; Vaughan C; Skidmore J; Conroy S; Pellittieri A; Carter BL; Stegman CJ; He S
    Ear Hear; 2021; 42(5):1358-1372. PubMed ID: 33795616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains.
    Kirby AE; Middlebrooks JC
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):67-80. PubMed ID: 21969022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-Related Changes in Temporal Resolution Revisited: Electrophysiological and Behavioral Findings From Cochlear Implant Users.
    Mussoi BSS; Brown CJ
    Ear Hear; 2019; 40(6):1328-1344. PubMed ID: 31033701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study.
    van Gendt MJ; Briaire JJ; Frijns JHM
    Hear Res; 2019 Jun; 377():167-178. PubMed ID: 30947041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.
    Ramekers D; Versnel H; Strahl SB; Klis SF; Grolman W
    Hear Res; 2015 Mar; 321():12-24. PubMed ID: 25582354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal response properties of the auditory nerve: data from human cochlear-implant recipients.
    Hughes ML; Castioni EE; Goehring JL; Baudhuin JL
    Hear Res; 2012 Mar; 285(1-2):46-57. PubMed ID: 22326590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intonation of musical intervals by musical intervals by deaf subjects stimulated with single bipolar cochlear implant electrodes.
    Pijl S; Schwarz DW
    Hear Res; 1995 Sep; 89(1-2):203-11. PubMed ID: 8600127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.