BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23716671)

  • 1. Neuroligin-1 links neuronal activity to sleep-wake regulation.
    El Helou J; Bélanger-Nelson E; Freyburger M; Dorsaz S; Curie T; La Spada F; Gaudreault PO; Beaumont É; Pouliot P; Lesage F; Frank MG; Franken P; Mongrain V
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9974-9. PubMed ID: 23716671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kv2.2: a novel molecular target to study the role of basal forebrain GABAergic neurons in the sleep-wake cycle.
    Hermanstyne TO; Subedi K; Le WW; Hoffman GE; Meredith AL; Mong JA; Misonou H
    Sleep; 2013 Dec; 36(12):1839-48. PubMed ID: 24293758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep Homeostatic and Waking Behavioral Phenotypes in
    Grønli J; Clegern WC; Schmidt MA; Nemri RS; Rempe MJ; Gallitano AL; Wisor JP
    Sleep; 2016 Dec; 39(12):2189-2199. PubMed ID: 28057087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.
    Mikhail C; Vaucher A; Jimenez S; Tafti M
    Sci Signal; 2017 Jan; 10(463):. PubMed ID: 28119463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.
    Freyburger M; Pierre A; Paquette G; Bélanger-Nelson E; Bedont J; Gaudreault PO; Drolet G; Laforest S; Blackshaw S; Cermakian N; Doucet G; Mongrain V
    Sleep; 2016 Mar; 39(3):613-24. PubMed ID: 26612390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.
    Mang GM; La Spada F; Emmenegger Y; Chappuis S; Ripperger JA; Albrecht U; Franken P
    Sleep; 2016 Mar; 39(3):589-601. PubMed ID: 26564124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of hippocampal long term depression by Neuroligin 1.
    Dang R; Qi J; Liu A; Ren Q; Lv D; Han L; Zhou Z; Cao F; Xie W; Jia Z
    Neuropharmacology; 2018 Dec; 143():205-216. PubMed ID: 30266599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness.
    Yu X; Ma Y; Harding EC; Yustos R; Vyssotski AL; Franks NP; Wisden W
    Sleep; 2019 May; 42(5):. PubMed ID: 30722053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations.
    Hellman K; Hernandez P; Park A; Abel T
    Sleep; 2010 Jan; 33(1):19-28. PubMed ID: 20120617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice.
    Seok BS; Cao F; Bélanger-Nelson E; Provost C; Gibbs S; Jia Z; Mongrain V
    Mol Brain; 2018 Sep; 11(1):52. PubMed ID: 30231918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice.
    Freyburger M; Poirier G; Carrier J; Mongrain V
    J Sleep Res; 2017 Oct; 26(5):539-546. PubMed ID: 28488395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of
    Suzuki A; Yanagisawa M; Greene RW
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10547-10553. PubMed ID: 32350140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered sleep regulation in a mouse model of SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+).
    Papale LA; Makinson CD; Christopher Ehlen J; Tufik S; Decker MJ; Paul KN; Escayg A
    Epilepsia; 2013 Apr; 54(4):625-34. PubMed ID: 23311867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice.
    Hu WP; Li JD; Zhang C; Boehmer L; Siegel JM; Zhou QY
    Sleep; 2007 Mar; 30(3):247-56. PubMed ID: 17425220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice.
    Qu WM; Xu XH; Yan MM; Wang YQ; Urade Y; Huang ZL
    J Neurosci; 2010 Mar; 30(12):4382-9. PubMed ID: 20335474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep/Wake Physiology and Quantitative Electroencephalogram Analysis of the Neuroligin-3 Knockout Rat Model of Autism Spectrum Disorder.
    Thomas AM; Schwartz MD; Saxe MD; Kilduff TS
    Sleep; 2017 Oct; 40(10):. PubMed ID: 28958035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.