These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23717323)

  • 1. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies.
    Ricachenevsky FK; Menguer PK; Sperotto RA; Williams LE; Fett JP
    Front Plant Sci; 2013; 4():144. PubMed ID: 23717323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification.
    Vatansever R; Filiz E; Eroglu S
    Biometals; 2017 Apr; 30(2):217-235. PubMed ID: 28150142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice.
    Ram H; Kaur A; Gandass N; Singh S; Deshmukh R; Sonah H; Sharma TR
    PLoS One; 2019; 14(5):e0217360. PubMed ID: 31136613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tale of two metals: Biofortification of rice grains with iron and zinc.
    Wairich A; Ricachenevsky FK; Lee S
    Front Plant Sci; 2022; 13():944624. PubMed ID: 36420033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triticum urartu MTP1: its ability to maintain Zn
    Wang FH; Qiao K; Liang S; Tian SQ; Tian YB; Wang H; Chai TY
    Plant Cell Rep; 2018 Dec; 37(12):1653-1666. PubMed ID: 30167804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal tolerance gene family in barley: an in silico comprehensive analysis.
    Tanwar UK; Stolarska E; Rudy E; Paluch-Lubawa E; Grabsztunowicz M; Arasimowicz-Jelonek M; Sobieszczuk-Nowicka E
    J Appl Genet; 2023 May; 64(2):197-215. PubMed ID: 36586056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AhNRAMP1 Enhances Manganese and Zinc Uptake in Plants.
    Wang N; Qiu W; Dai J; Guo X; Lu Q; Wang T; Li S; Liu T; Zuo Y
    Front Plant Sci; 2019; 10():415. PubMed ID: 31134101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Identification and Expression Analysis of MTP (Metal Ion Transport Proteins) Genes in the Common Bean.
    Yilmaz H; Özer G; Baloch FS; Çiftçi V; Chung YS; Sun HJ
    Plants (Basel); 2023 Sep; 12(18):. PubMed ID: 37765382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution and functional diversification of metal tolerance protein families in cereals plants and function of maize MTP protein.
    Zhao C; Cui X; Yu X; Ning X; Yu H; Li J; Yang B; Pan Y; Jiang L
    Int J Biol Macromol; 2024 Jun; 274(Pt 1):133071. PubMed ID: 38871096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications.
    Ricachenevsky FK; Menguer PK; Sperotto RA; Fett JP
    Plant Sci; 2015 Jul; 236():1-17. PubMed ID: 26025516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Membrane Transporters in the Biofortification of Zinc and Iron in Plants.
    Krishna TPA; Maharajan T; Ceasar SA
    Biol Trace Elem Res; 2023 Jan; 201(1):464-478. PubMed ID: 35182385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7.
    Ricachenevsky FK; Punshon T; Lee S; Oliveira BHN; Trenz TS; Maraschin FDS; Hindt MN; Danku J; Salt DE; Fett JP; Guerinot ML
    Front Plant Sci; 2018; 9():865. PubMed ID: 30018622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc in plants: Integrating homeostasis and biofortification.
    Stanton C; Sanders D; Krämer U; Podar D
    Mol Plant; 2022 Jan; 15(1):65-85. PubMed ID: 34952215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe.
    Shanmugam V; Lo JC; Yeh KC
    Front Plant Sci; 2013; 4():281. PubMed ID: 23966999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the rice vacuolar zinc transporter OsMTP1.
    Menguer PK; Farthing E; Peaston KA; Ricachenevsky FK; Fett JP; Williams LE
    J Exp Bot; 2013 Jul; 64(10):2871-83. PubMed ID: 23761487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice.
    Kappara S; Neelamraju S; Ramanan R
    Plant Sci; 2018 Nov; 276():208-219. PubMed ID: 30348320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.
    Fu XZ; Tong YH; Zhou X; Ling LL; Chun CP; Cao L; Zeng M; Peng LZ
    Gene; 2017 Sep; 629():1-8. PubMed ID: 28760553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance.
    Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X
    Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.
    Bashir K; Rasheed S; Kobayashi T; Seki M; Nishizawa NK
    Front Plant Sci; 2016; 7():1192. PubMed ID: 27547212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological limits to zinc biofortification of edible crops.
    White PJ; Broadley MR
    Front Plant Sci; 2011; 2():80. PubMed ID: 22645552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.