These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23717324)

  • 1. MicroRNAs and Drug Addiction.
    Bali P; Kenny PJ
    Front Genet; 2013; 4():43. PubMed ID: 23717324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212.
    Im HI; Hollander JA; Bali P; Kenny PJ
    Nat Neurosci; 2010 Sep; 13(9):1120-7. PubMed ID: 20711185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs.
    Jonkman S; Kenny PJ
    Neuropsychopharmacology; 2013 Jan; 38(1):198-211. PubMed ID: 22968819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal microRNA controls cocaine intake through CREB signalling.
    Hollander JA; Im HI; Amelio AL; Kocerha J; Bali P; Lu Q; Willoughby D; Wahlestedt C; Conkright MD; Kenny PJ
    Nature; 2010 Jul; 466(7303):197-202. PubMed ID: 20613834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics, microRNA, and addiction.
    Kenny PJ
    Dialogues Clin Neurosci; 2014 Sep; 16(3):335-44. PubMed ID: 25364284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction-prone rats.
    Quinn RK; James MH; Hawkins GE; Brown AL; Heathcote A; Smith DW; Cairns MJ; Dayas CV
    Addict Biol; 2018 Mar; 23(2):631-642. PubMed ID: 28612502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased cocaine-induced conditioned place preference during periadolescence in maternally separated male BALB/c mice: the role of cortical BDNF, microRNA-212, and MeCP2.
    Viola TW; Wearick-Silva LE; De Azeredo LA; Centeno-Silva A; Murphy C; Marshall P; Li X; Singewald N; Garcia F; Bredy TW; Grassi-Oliveira R
    Psychopharmacology (Berl); 2016 Sep; 233(17):3279-88. PubMed ID: 27392631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity.
    Chandrasekar V; Dreyer JL
    Mol Cell Neurosci; 2009 Dec; 42(4):350-62. PubMed ID: 19703567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens.
    Bastle RM; Oliver RJ; Gardiner AS; Pentkowski NS; Bolognani F; Allan AM; Chaudhury T; St Peter M; Galles N; Smith C; Neisewander JL; Perrone-Bizzozero NI
    Mol Psychiatry; 2018 Feb; 23(2):434-443. PubMed ID: 28044061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the roles of microRNAs in drug addiction and neuroplasticity.
    Dreyer JL
    Genome Med; 2010 Dec; 2(12):92. PubMed ID: 21205279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged Induction of miR-212/132 and REST Expression in Rat Striatum Following Cocaine Self-Administration.
    Sadakierska-Chudy A; Frankowska M; Miszkiel J; Wydra K; Jastrzębska J; Filip M
    Mol Neurobiol; 2017 Apr; 54(3):2241-2254. PubMed ID: 26944283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".
    Nestler EJ
    Brain Res; 2016 Aug; 1645():71-4. PubMed ID: 26740398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-derived neurotrophic factor signaling modulates cocaine induction of reward-associated ultrasonic vocalization in rats.
    Williams SN; Undieh AS
    J Pharmacol Exp Ther; 2010 Feb; 332(2):463-8. PubMed ID: 19843976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs.
    Eipper-Mains JE; Kiraly DD; Palakodeti D; Mains RE; Eipper BA; Graveley BR
    RNA; 2011 Aug; 17(8):1529-43. PubMed ID: 21708909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-132 Down-regulates Methyl CpG Binding Protein 2 (MeCP2) During Cognitive Dysfunction Following Chronic Cerebral Hypoperfusion.
    Yao ZH; Yao XL; Zhang Y; Zhang SF; Hu J
    Curr Neurovasc Res; 2017; 14(4):385-396. PubMed ID: 29090669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors.
    Mao LM; Horton E; Guo ML; Xue B; Jin DZ; Fibuch EE; Wang JQ
    Neurochem Int; 2011 Oct; 59(5):610-7. PubMed ID: 21704097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple faces of BDNF in cocaine addiction.
    Li X; Wolf ME
    Behav Brain Res; 2015 Feb; 279():240-54. PubMed ID: 25449839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement.
    Choi KH; Whisler K; Graham DL; Self DW
    Neuroscience; 2006; 137(2):373-83. PubMed ID: 16359811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of miR-15a Promotes BDNF Expression and Rescues Dendritic Maturation Deficits in MeCP2-Deficient Neurons.
    Gao Y; Su J; Guo W; Polich ED; Magyar DP; Xing Y; Li H; Smrt RD; Chang Q; Zhao X
    Stem Cells; 2015 May; 33(5):1618-29. PubMed ID: 25639236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.