These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23717384)

  • 1. Wicking: a rapid method for manually inserting ion channels into planar lipid bilayers.
    Costa JA; Nguyen DA; Leal-Pinto E; Gordon RE; Hanss B
    PLoS One; 2013; 8(5):e60836. PubMed ID: 23717384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers.
    Woodbury DJ; Miller C
    Biophys J; 1990 Oct; 58(4):833-9. PubMed ID: 1701101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-channel reconstitution.
    Morera FJ; Vargas G; González C; Rosenmann E; Latorre R
    Methods Mol Biol; 2007; 400():571-85. PubMed ID: 17951760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non stochastic distribution of single channels in planar lipid bilayers.
    Krasilnikov OV; Merzliak PG; Yuldasheva LN; Nogueira RA; Rodrigues CG
    Biochim Biophys Acta; 1995 Feb; 1233(2):105-10. PubMed ID: 7532434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration and recording of a reconstituted voltage-gated sodium channel in planar lipid bilayers.
    Studer A; Demarche S; Langenegger D; Tiefenauer L
    Biosens Bioelectron; 2011 Jan; 26(5):1924-8. PubMed ID: 20609576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequent fusion of liposomes to a positively charged planar bilayer without calcium ions.
    Anzai K; Masumi M; Kawasaki K; Kirino Y
    J Biochem; 1993 Oct; 114(4):487-91. PubMed ID: 7506250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaped apertures in photoresist films enhance the lifetime and mechanical stability of suspended lipid bilayers.
    Kalsi S; Powl AM; Wallace BA; Morgan H; de Planque MR
    Biophys J; 2014 Apr; 106(8):1650-9. PubMed ID: 24739164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes.
    Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL
    Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles.
    Zheng H; Lee S; Llaguno MC; Jiang QX
    J Gen Physiol; 2016 Jan; 147(1):77-93. PubMed ID: 26712851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes.
    Kaulin YA; Schagina LV; Bezrukov SM; Malev VV; Feigin AM; Takemoto JY; Teeter JH; Brand JG
    Biophys J; 1998 Jun; 74(6):2918-25. PubMed ID: 9635746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis.
    Jing P; Paraiso H; Burris B
    Mol Biosyst; 2016 Feb; 12(2):480-9. PubMed ID: 26661052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution and Electrophysiological Characterization of Ion Channels in Lipid Bilayers.
    Klaerke DA; Tejada MLA; Christensen VG; Lassen M; Pedersen PA; Calloe K
    Curr Protoc Pharmacol; 2018 Jun; 81(1):e37. PubMed ID: 29927074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Storable droplet interface lipid bilayers for cell-free ion channel studies.
    Jung SH; Choi S; Kim YR; Jeon TJ
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):241-6. PubMed ID: 21909672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional reconstitution of mammalian 'chloride intracellular channels' CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin.
    Singh H; Cousin MA; Ashley RH
    FEBS J; 2007 Dec; 274(24):6306-16. PubMed ID: 18028448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channel reconstitution in lipid bilayers.
    Zakharian E
    Methods Enzymol; 2021; 652():273-291. PubMed ID: 34059285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCMTR: a chloride-selective, membrane-anchored peptide channel that exhibits voltage gating.
    Schlesinger PH; Ferdani R; Liu J; Pajewska J; Pajewski R; Saito M; Shabany H; Gokel GW
    J Am Chem Soc; 2002 Mar; 124(9):1848-9. PubMed ID: 11866586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of calcium channel activity by lipid domain formation in planar lipid bilayers.
    Cannon B; Hermansson M; Györke S; Somerharju P; Virtanen JA; Cheng KH
    Biophys J; 2003 Aug; 85(2):933-42. PubMed ID: 12885640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion of ion channels into planar lipid bilayers by vesicle fusion.
    Labarca P; Latorre R
    Methods Enzymol; 1992; 207():447-63. PubMed ID: 1382196
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.