These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23717603)

  • 1. Repair of abdominal wall defects in vitro and in vivo using VEGF sustained-release multi-walled carbon nanotubes (MWNT) composite scaffolds.
    Song Z; Yang Z; Yang J; Liu Z; Peng Z; Tang R; Gu Y
    PLoS One; 2013; 8(5):e64358. PubMed ID: 23717603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair.
    Liu Z; Feng X; Wang H; Ma J; Liu W; Cui D; Gu Y; Tang R
    Int J Nanomedicine; 2014; 9():1275-86. PubMed ID: 24648727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats.
    Song Z; Peng Z; Liu Z; Yang J; Tang R; Gu Y
    Tissue Eng Part A; 2013 Jul; 19(13-14):1543-53. PubMed ID: 23402600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of Abdominal Wall Defect with Composite Scaffold of 3D Printed ADM/PLA in a Rat Model.
    Song Z; Yang D; Hu Q; Wang Y; Zhang H; Dong W; Yang J; Gu Y
    Macromol Biosci; 2023 Apr; 23(4):e2200521. PubMed ID: 36746773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralized poly(lactic acid) scaffolds loading vascular endothelial growth factor and the in vivo performance in rat subcutaneous model.
    Kim JH; Kim TH; Jin GZ; Park JH; Yun YR; Jang JH; Kim HW
    J Biomed Mater Res A; 2013 May; 101(5):1447-55. PubMed ID: 23114998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization.
    Dou DD; Zhou G; Liu HW; Zhang J; Liu ML; Xiao XF; Fei JJ; Guan XL; Fan YB
    Int J Biol Macromol; 2019 Feb; 123():622-628. PubMed ID: 30447364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model.
    Zhang J; Wang GY; Xiao YP; Fan LY; Wang Q
    Biomaterials; 2011 Oct; 32(29):7086-95. PubMed ID: 21741703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of porcine urinary bladder matrix and porcine acellular dermal matrix on wound healing of full-thickness skin defect in diabetic mice].
    Zhao P; Yang ML; Chu GP; Jia ZG; Zhou XJ; Lyu GZ
    Zhonghua Shao Shang Za Zhi; 2020 Dec; 36(12):1130-1138. PubMed ID: 33379849
    [No Abstract]   [Full Text] [Related]  

  • 10. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.
    Fan MR; Gong M; Da LC; Bai L; Li XQ; Chen KF; Li-Ling J; Yang ZM; Xie HQ
    Biomed Mater; 2014 Feb; 9(1):015012. PubMed ID: 24457267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healing effect of acellular dermal matrixes for repair of abdominal wall defects in a rat model.
    Kim JM; Choi SH
    In Vivo; 2013; 27(6):755-60. PubMed ID: 24292579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of small intestinal submucosal and acellular dermal matrix grafts in giant omphaloceles in neonates and a rabbit abdominal wall defect model.
    Jiang W; Zhang J; Lv X; Lu C; Chen H; Xu X; Tang W
    J Pediatr Surg; 2016 Mar; 51(3):368-73. PubMed ID: 26364879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.
    Rong ZJ; Yang LJ; Cai BT; Zhu LX; Cao YL; Wu GF; Zhang ZJ
    J Mater Sci Mater Med; 2016 May; 27(5):89. PubMed ID: 26975746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo.
    Kafa H; Wang JT; Rubio N; Klippstein R; Costa PM; Hassan HA; Sosabowski JK; Bansal SS; Preston JE; Abbott NJ; Al-Jamal KT
    J Control Release; 2016 Mar; 225():217-29. PubMed ID: 26809004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats.
    Liu Z; Tang R; Zhou Z; Song Z; Wang H; Gu Y
    PLoS One; 2011; 6(5):e20520. PubMed ID: 21637777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the aspect ratio of multi-walled carbon nanotubes on the structure and properties of regenerated collagen fibers.
    Ding C; Du J; Cao Y; Yue C; Cheng B
    Int J Biol Macromol; 2019 Apr; 126():595-602. PubMed ID: 30576737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting early neovascularization of SIS-repaired abdominal wall by controlled release of bioactive VEGF.
    Tang R; Wang X; Zhang H; Liang X; Feng X; Zhu X; Lu X; Wu F; Liu Z
    RSC Adv; 2018 Jan; 8(9):4548-4560. PubMed ID: 35539528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vivo and in-vitro histological evaluation of two commercially available acellular dermal matrices.
    Faleris JA; Hernandez RM; Wetzel D; Dodds R; Greenspan DC
    Hernia; 2011 Apr; 15(2):147-56. PubMed ID: 21103998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization.
    Zhang ZD; Xu YQ; Chen F; Luo JF; Liu CD
    Heart Vessels; 2019 Jan; 34(1):167-176. PubMed ID: 30043157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.