These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23717607)
41. Regenerating temperate forest mesocosms in elevated CO Berntson GM; Bazzaz FA Oecologia; 1997 Dec; 113(1):115-125. PubMed ID: 28307286 [TBL] [Abstract][Full Text] [Related]
42. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Zak DR; Holmes WE; Pregitzer KS Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765 [TBL] [Abstract][Full Text] [Related]
43. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981 [TBL] [Abstract][Full Text] [Related]
44. Effect of elevated CO2 on carbon partitioning in young Quercus ilex L. during resprouting. Aranjuelo I; Pintó-Marijuan M; Avice JC; Fleck I Rapid Commun Mass Spectrom; 2011 Jun; 25(11):1527-35. PubMed ID: 21594926 [TBL] [Abstract][Full Text] [Related]
45. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production. Smith C; Baldwin AH; Sullivan J; Leisnham PT J Med Entomol; 2013 May; 50(3):521-32. PubMed ID: 23802446 [TBL] [Abstract][Full Text] [Related]
46. Differentiated mineral nutrient management in two bamboo species under elevated CO Guo Z; Zhuang M; Yang L; Li Y; Wu S; Chen S J Environ Manage; 2021 Feb; 279():111600. PubMed ID: 33160742 [TBL] [Abstract][Full Text] [Related]
47. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Jin J; Tang C; Sale P Ann Bot; 2015 Nov; 116(6):987-99. PubMed ID: 26113632 [TBL] [Abstract][Full Text] [Related]
48. Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Insam H; Bååth E; Berreck M; Frostegård A; Gerzabek MH; Kraft A; Schinner F; Schweiger P; Tschuggnall G J Microbiol Methods; 1999 May; 36(1-2):45-54. PubMed ID: 10353799 [TBL] [Abstract][Full Text] [Related]
49. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Liu L; King JS; Giardina CP Tree Physiol; 2005 Dec; 25(12):1511-22. PubMed ID: 16137937 [TBL] [Abstract][Full Text] [Related]
50. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987 [TBL] [Abstract][Full Text] [Related]
51. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Reef R; Winter K; Morales J; Adame MF; Reef DL; Lovelock CE Physiol Plant; 2015 Jul; 154(3):358-68. PubMed ID: 25263409 [TBL] [Abstract][Full Text] [Related]
52. Effects of plant functional group removal on CO Grau-Andrés R; Wardle DA; Gundale MJ; Foster CN; Kardol P Ecology; 2020 Dec; 101(12):e03170. PubMed ID: 32846007 [TBL] [Abstract][Full Text] [Related]
53. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Reef R; Slot M; Motro U; Motro M; Motro Y; Adame MF; Garcia M; Aranda J; Lovelock CE; Winter K Photosynth Res; 2016 Aug; 129(2):159-70. PubMed ID: 27259536 [TBL] [Abstract][Full Text] [Related]
54. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. Bloemen J; Agneessens L; Van Meulebroek L; Aubrey DP; McGuire MA; Teskey RO; Steppe K New Phytol; 2014 Feb; 201(3):897-907. PubMed ID: 24400900 [TBL] [Abstract][Full Text] [Related]
55. Loss of plant biodiversity eliminates stimulatory effect of elevated CO2 on earthworm activity in grasslands. Arnone JA; Zaller JG; Hofer G; Schmid B; Körner C Oecologia; 2013 Mar; 171(3):613-22. PubMed ID: 23392959 [TBL] [Abstract][Full Text] [Related]
56. Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Q. garryana, and Q. agrifolia seedlings grown in a northern California oak woodland. He XH; Horwath WR; Zasoski RJ; Aanderud Z; Bledsoe CS Mycorrhiza; 2007 Dec; 18(1):33-41. PubMed ID: 17899217 [TBL] [Abstract][Full Text] [Related]
57. Elevated CO2 affects secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Jia X; Zhao Y; Liu T; Huang S Chemosphere; 2016 Oct; 160():199-207. PubMed ID: 27376859 [TBL] [Abstract][Full Text] [Related]
58. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Gill RA; Anderson LJ; Polley HW; Johnson HB; Jackson RB Ecology; 2006 Jan; 87(1):41-52. PubMed ID: 16634295 [TBL] [Abstract][Full Text] [Related]
59. No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert. Newingham BA; Vanier CH; Charlet TN; Ogle K; Smith SD; Nowak RS Glob Chang Biol; 2013 Jul; 19(7):2168-81. PubMed ID: 23505209 [TBL] [Abstract][Full Text] [Related]
60. Ecosystem responses to elevated CO Terrer C; Vicca S; Stocker BD; Hungate BA; Phillips RP; Reich PB; Finzi AC; Prentice IC New Phytol; 2018 Jan; 217(2):507-522. PubMed ID: 29105765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]