BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23717993)

  • 1. [Effects of exogenous iron on lead accumulation in Typha latifolia from a lead-contaminated soil].
    Zhong SQ; Xu JM
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):78-82. PubMed ID: 23717993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants].
    Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM
    Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of iron plaque on lead translocation in soil-Carex cinerascens kukenth. system.
    Liu C; Gong X; Chen C; Yang J; Xu S
    Int J Phytoremediation; 2016; 18(1):1-9. PubMed ID: 26364868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrotron study of metal localization in Typha latifolia L. root sections.
    Qian Y; Feng H; Gallagher FJ; Zhu Q; Wu M; Liu CJ; Jones KW; Tappero RV
    J Synchrotron Radiat; 2015 Nov; 22(6):1459-68. PubMed ID: 26524311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Zhang W; Yu L; Liu C; Jones KW; Tappero R
    J Environ Sci (China); 2016 Mar; 41():172-182. PubMed ID: 26969063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phosphorus rhizosphere depletion effect of four aquatic plants].
    Wang ZY; Wen SF; Xing BS; Gao DM; Li FM; Hu HY; Sakoda A; Sagehashi M
    Huan Jing Ke Xue; 2008 Sep; 29(9):2475-80. PubMed ID: 19068629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands.
    Anning AK; Korsah PE; Addo-Fordjour P
    Int J Phytoremediation; 2013; 15(5):452-64. PubMed ID: 23488171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting plant-induced changes in heavy metals dynamics: Implications for phytoremediation strategies in estuarine wetlands.
    Ferreira AD; Queiroz HM; Boim AGF; Duckworth OW; Otero XL; Bernardino ÂF; Ferreira TO
    Ecotoxicol Environ Saf; 2024 Jul; 279():116416. PubMed ID: 38749195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.
    Han J; Chen F; Zhou Y; Wang C
    Water Sci Technol; 2015; 71(11):1734-41. PubMed ID: 26038940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus utilization and microbial community in response to lead/iron addition to a waterlogged soil.
    Zhong S; Wu Y; Xu J
    J Environ Sci (China); 2009; 21(10):1415-23. PubMed ID: 19999997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum.
    Saghi A; Rashed Mohassel MH; Parsa M; Hammami H
    Int J Phytoremediation; 2016; 18(4):387-92. PubMed ID: 26552966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.
    Cui S; Zhang T; Zhao S; Li P; Zhou Q; Zhang Q; Han Q
    Int J Phytoremediation; 2013; 15(4):299-306. PubMed ID: 23487996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P
    J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant
    Chi H; Yang L; Yang W; Li Y; Chen Z; Huang L; Chao Y; Qiu R; Wang S
    Int J Environ Res Public Health; 2018 Nov; 15(12):. PubMed ID: 30469475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury.
    Amir W; Farid M; Ishaq HK; Farid S; Zubair M; Alharby HF; Bamagoos AA; Rizwan M; Raza N; Hakeem KR; Ali S
    Chemosphere; 2020 Oct; 257():127247. PubMed ID: 32534296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.
    Yang J; Liu Z; Wan X; Zheng G; Yang J; Zhang H; Guo L; Wang X; Zhou X; Guo Q; Xu R; Zhou G; Peters M; Zhu G; Wei R; Tian L; Han X
    Ecotoxicol Environ Saf; 2016 Jun; 128():206-12. PubMed ID: 26946285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.