These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 23718235)
41. Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: Powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. El-Batal AI; Abd Elkodous M; El-Sayyad GS; Al-Hazmi NE; Gobara M; Baraka A Int J Biol Macromol; 2020 Dec; 165(Pt A):169-186. PubMed ID: 32987079 [TBL] [Abstract][Full Text] [Related]
42. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance. Yao M; Shen P; Liu Y; Chen B; Guo W; Ruan S; Shen L ACS Appl Mater Interfaces; 2016 Mar; 8(9):6183-9. PubMed ID: 26900763 [TBL] [Abstract][Full Text] [Related]
43. Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid-Metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity. Wang T; Ma B; Jin A; Li X; Zhang X; Wang W; Cai Y J Hazard Mater; 2018 Jan; 342():392-400. PubMed ID: 28850917 [TBL] [Abstract][Full Text] [Related]
44. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. Khan FU; Chen Y; Khan NU; Khan ZU; Khan AU; Ahmad A; Tahir K; Wang L; Khan MR; Wan P J Photochem Photobiol B; 2016 Nov; 164():344-351. PubMed ID: 27723492 [TBL] [Abstract][Full Text] [Related]
45. Interfacial effects of in situ-synthesized Ag nanoparticles on breath figures. Jiang X; Zhou X; Zhang Y; Zhang T; Guo Z; Gu N Langmuir; 2010 Feb; 26(4):2477-83. PubMed ID: 19775133 [TBL] [Abstract][Full Text] [Related]
46. Combining Fluorinated Polymers with Ag Nanoparticles as a Route to Enhance Optical Properties of Composite Materials. Satulu V; Mitu B; Ion V; Marascu V; Matei E; Stancu C; Dinescu G Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32717998 [TBL] [Abstract][Full Text] [Related]
47. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. Azlin-Hasim S; Cruz-Romero MC; Cummins E; Kerry JP; Morris MA J Colloid Interface Sci; 2016 Jan; 461():239-248. PubMed ID: 26402783 [TBL] [Abstract][Full Text] [Related]
48. A Convenient Ultraviolet Irradiation Technique for Synthesis of Antibacterial Ag-Pal Nanocomposite. Han S; Zhang H; Kang L; Li X; Zhang C; Dong Y; Qin S Nanoscale Res Lett; 2016 Dec; 11(1):431. PubMed ID: 27677302 [TBL] [Abstract][Full Text] [Related]
49. Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers. Alonso A; Macanás J; Shafir A; Muñoz M; Vallribera A; Prodius D; Melnic S; Turta C; Muraviev DN Dalton Trans; 2010 Mar; 39(10):2579-86. PubMed ID: 20179851 [TBL] [Abstract][Full Text] [Related]
50. Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites. Jouyandeh M; Ganjali MR; Aghazadeh M; Habibzadeh S; Formela K; Saeb MR Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32823709 [TBL] [Abstract][Full Text] [Related]
51. Incorporated plant extract fabricated silver/poly-D,l-lactide-co-glycolide nanocomposites for antimicrobial based wound healing. Renu S; Shivashangari KS; Ravikumar V Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117673. PubMed ID: 31735599 [TBL] [Abstract][Full Text] [Related]
53. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. An X; Long Y; Ni Y Carbohydr Polym; 2017 Jan; 156():253-258. PubMed ID: 27842820 [TBL] [Abstract][Full Text] [Related]
54. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing. Rapakousiou A; Deraedt C; Irigoyen J; Wang Y; Pinaud N; Salmon L; Ruiz J; Moya S; Astruc D Inorg Chem; 2015 Mar; 54(5):2284-99. PubMed ID: 25676664 [TBL] [Abstract][Full Text] [Related]
55. Green solid-state based curcumin mediated rhamnolipids stabilized silver nanoparticles: Interaction of silver nanoparticles with cystine and albumins towards fluorescence sensing. Sadeq Al-Namil D; Patra D Colloids Surf B Biointerfaces; 2019 Jan; 173():647-653. PubMed ID: 30368212 [TBL] [Abstract][Full Text] [Related]
56. Biosynthesized silver nanoparticles for inhibition of antibacterial resistance and biofilm formation of methicillin-resistant coagulase negative Staphylococci. Rajivgandhi G; Maruthupandy M; Muneeswaran T; Anand M; Quero F; Manoharan N; Li WJ Bioorg Chem; 2019 Aug; 89():103008. PubMed ID: 31151056 [TBL] [Abstract][Full Text] [Related]
57. Formation and photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core. Gao J; Fu J; Lin C; Lin J; Han Y; Yu X; Pan C Langmuir; 2004 Oct; 20(22):9775-9. PubMed ID: 15491214 [TBL] [Abstract][Full Text] [Related]
59. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H Li C; Wu R; Zou J; Zhang T; Zhang S; Zhang Z; Hu X; Yan Y; Ling X Biosens Bioelectron; 2018 Sep; 116():81-88. PubMed ID: 29860090 [TBL] [Abstract][Full Text] [Related]