These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23718276)

  • 1. Thermal conductance calculations of silicon nanowires: comparison with diamond nanowires.
    Yamamoto K; Ishii H; Kobayashi N; Hirose K
    Nanoscale Res Lett; 2013 May; 8(1):256. PubMed ID: 23718276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat conductance is strongly anisotropic for pristine silicon nanowires.
    Markussen T; Jauho AP; Brandbyge M
    Nano Lett; 2008 Nov; 8(11):3771-5. PubMed ID: 18811212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning interfacial thermal conductance of GaN/AlN heterostructure nanowires by constructing core/shell structure.
    Ren X; Wu CW; Li SY; Xie ZX; Zhou WX
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36623322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity in porous silicon nanowire arrays.
    Weisse JM; Marconnet AM; Kim DR; Rao PM; Panzer MA; Goodson KE; Zheng X
    Nanoscale Res Lett; 2012 Oct; 7(1):554. PubMed ID: 23039084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry dependent I-V characteristics of silicon nanowires.
    Ng MF; Shen L; Zhou L; Yang SW; Tan VB
    Nano Lett; 2008 Nov; 8(11):3662-7. PubMed ID: 18850756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties.
    Fan Z; Wang Y; Gu X; Qian P; Su Y; Ala-Nissila T
    J Phys Condens Matter; 2020 Mar; 32(13):135901. PubMed ID: 31775129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductance of thin silicon nanowires.
    Chen R; Hochbaum AI; Murphy P; Moore J; Yang P; Majumdar A
    Phys Rev Lett; 2008 Sep; 101(10):105501. PubMed ID: 18851223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes.
    Yamamoto T; Watanabe K
    Phys Rev Lett; 2006 Jun; 96(25):255503. PubMed ID: 16907319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating.
    Fonoberov VA; Balandin AA
    Nano Lett; 2006 Nov; 6(11):2442-6. PubMed ID: 17090071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.
    Li L; Fang Y; Xu C; Zhao Y; Zang N; Jiang P; Ziegler KJ
    Nanotechnology; 2016 Apr; 27(16):165303. PubMed ID: 26953775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous thermal conductance of graphyne under lower temperature.
    Chen XK; Liu J; Du D; Chen KQ
    J Phys Condens Matter; 2017 Nov; 29(45):455702. PubMed ID: 28901293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrananocrystalline diamond-decorated silicon nanowire field emitters.
    Palomino J; Varshney D; Resto O; Weiner BR; Morell G
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13815-22. PubMed ID: 25046006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying surface roughness effects on phonon transport in silicon nanowires.
    Lim J; Hippalgaonkar K; Andrews SC; Majumdar A; Yang P
    Nano Lett; 2012 May; 12(5):2475-82. PubMed ID: 22524211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport.
    Hippalgaonkar K; Huang B; Chen R; Sawyer K; Ercius P; Majumdar A
    Nano Lett; 2010 Nov; 10(11):4341-8. PubMed ID: 20939585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.