BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23718599)

  • 21. Evaluation of a lithium formate EPR dosimetry system for dose measurements around 192Ir brachytherapy sources.
    Antonovic L; Gustafsson H; Carlsson GA; Carlsson Tedgren A
    Med Phys; 2009 Jun; 36(6):2236-47. PubMed ID: 19610313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo dosimetric characterization of a new high dose rate
    Famulari G; Linares Rosales HM; Dupere J; Medich DC; Beaulieu L; Enger SA
    Med Phys; 2020 Sep; 47(9):4563-4573. PubMed ID: 32686145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in
    Kaveckyte V; Jørgensen EB; Kertzscher G; Johansen JG; Carlsson Tedgren Å
    Med Phys; 2022 Jul; 49(7):4715-4730. PubMed ID: 35443079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mean photon energy ĒF at the point of measurement determines the detector-specific radiation quality correction factor kQ,M in (192)Ir brachytherapy dosimetry.
    Chofor N; Harder D; Selbach HJ; Poppe B
    Z Med Phys; 2016 Sep; 26(3):238-50. PubMed ID: 26387927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.
    Ho Than MT; Munro Iii JJ; Medich DC
    J Appl Clin Med Phys; 2015 May; 16(3):5270. PubMed ID: 26103489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic evaluation of photodetector performance for plastic scintillation dosimetry.
    Boivin J; Beddar S; Guillemette M; Beaulieu L
    Med Phys; 2015 Nov; 42(11):6211-20. PubMed ID: 26520714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors.
    Qi ZY; Deng XW; Huang SM; Lu J; Lerch M; Cutajar D; Rosenfeld A
    Med Phys; 2007 Jun; 34(6):2007-13. PubMed ID: 17654904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance.
    Gagnon JC; Thériault D; Guillot M; Archambault L; Beddar S; Gingras L; Beaulieu L
    Med Phys; 2012 Jan; 39(1):429-36. PubMed ID: 22225313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement of instantaneous source speed for a HDR brachytherapy unit using an optical fiber based detector.
    Minamisawa RA; Rubo RA; Seraide RM; Rocha JR; Almeida A
    Med Phys; 2010 Oct; 37(10):5407-11. PubMed ID: 21089776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy.
    Santos AM; Mohammadi M; Afshar V S
    Med Phys; 2015 Nov; 42(11):6349-56. PubMed ID: 26520726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inorganic scintillation detectors based on Eu-activated phosphors for
    Kertzscher G; Beddar S
    Phys Med Biol; 2017 Jun; 62(12):5046-5075. PubMed ID: 28475494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ruby-based inorganic scintillation detectors for
    Kertzscher G; Beddar S
    Phys Med Biol; 2016 Nov; 61(21):7744-7764. PubMed ID: 27740947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Six-probe scintillator dosimeter for treatment verification in HDR-brachytherapy.
    Gonod M; Suarez MA; Avila CC; Karakhanyan V; Eustache C; Laskri S; Crouzilles J; Vinchant JF; Aubignac L; Grosjean T
    Med Phys; 2023 Nov; 50(11):7192-7202. PubMed ID: 37738612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the use of machine learning methods for mPSD calibration in HDR brachytherapy.
    Linares Rosales HM; Couture G; Archambault L; Beddar S; Després P; Beaulieu L
    Phys Med; 2021 Nov; 91():73-79. PubMed ID: 34717139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy assessment of the superposition principle for evaluating dose distributions of elongated and curved 103Pd and 192Ir brachytherapy sources.
    Bannon EA; Yang Y; Rivard MJ
    Med Phys; 2011 Jun; 38(6):2957-63. PubMed ID: 21815369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of a diamond detector to brachytherapy dosimetry.
    Rustgi SN
    Phys Med Biol; 1998 Aug; 43(8):2085-94. PubMed ID: 9725591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy.
    Tho D; Beaulieu L
    Med Phys; 2019 May; 46(5):2031-2036. PubMed ID: 30919450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suitability of microDiamond detectors for the determination of absorbed dose to water around high-dose-rate
    Kaveckyte V; Malusek A; Benmakhlouf H; Alm Carlsson G; Carlsson Tedgren Å
    Med Phys; 2018 Jan; 45(1):429-437. PubMed ID: 29171060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.
    Lambert J; Nakano T; Law S; Elsey J; McKenzie DR; Suchowerska N
    Med Phys; 2007 May; 34(5):1759-65. PubMed ID: 17555257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plastic scintillation dosimetry: optimization of light collection efficiency.
    Beddar AS; Law S; Suchowerska N; Mackie TR
    Phys Med Biol; 2003 May; 48(9):1141-52. PubMed ID: 12765328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.